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Abstract—Speech enhancement is a relevant component in 
many real-world applications such as hearing aid devices, mobile 
telecommunications, and healthcare applications. In this paper, 
we investigate on the Dilated Wave-U-Net model: a recently 
proposed end-to-end neural speech enhancement approach based 
on the Wave-U-Net architecture. We evaluate the performance of 
the model on two datasets: the public VCTK dataset, and a 
contaminated version of Librispeech dataset. In particular, we 
experiment on using alternative losses based on the MSE loss, L1 
norm and on a combination of L1 and MSE losses. Results show 
that the Dilated Wave-U-Net architecture outperforms other 
state-of-the-art methods in terms of intelligibility and quality 
metrics on both datasets and that MSE loss is the most 
performing one. 

I. INTRODUCTION 

Speech Enhancement is a fundamental task in the field of 
signal processing for a wide range of applications e.g. mobile 
telecommunication, and speaker recognition [1], aids to people 
with hearing difficulties. During the last decades, tremendous 
growth has been observed in the speech enhancement research 
area, in particular towards improving the robustness of 
automatic speech recognition systems (ASR) in noisy 
conditions.  

Speech Enhancement can be formulated as a supervised 
learning problem whose goal is to separate the target speech 
signals from the background noise and reverberation. The 
presence of environmental noise and reverberation degrades 
both the speech quality and intelligibility. Moreover, in ASR 
systems, the environmental noise critically worsens the 
performance leading to high word error rate (WER) [2-4]. 

The speech enhancement problem is to some extent related 
to the effect of a cocktail party where the human brain and 
auditory system try to extract the target speech signal and 
eliminate the other signals. Mathematically, denoting x[n] as 
clean speech signals and s[n] as additive noise, as commonly 
done in the literature environmental noise is modelled as 
additive noise, at time index (n), noisy speech signals y[n] can 
be expressed as: 

][][][ nsnxny                                        (1) 

The goal of speech enhancement algorithms is to estimate 
the enhanced signal ][ˆ nx  from the noisy signal y[n], such that: 

][][ˆ nxnx          (2) 

Fig. 1 shows the basic structure of the signal distortion 
problem and the enhanced signal ][ˆ nx , which is estimated from 
the speech enhancement algorithm. 

 

 

Fig. 1. Speech Enhancement framework 

Generally, speech enhancement algorithms are data-driven 
and can be categorized into spectral-based methods and time-
based methods [5]. The spectral-based methods [6-8], which 
are more classical, are: spectral subtractions, Wiener filter, and 
subspace algorithms. The drawbacks of these approaches are 
that most of them depend on the spectral information of the 
speech signals, which can be extracted using short-time Fourier 
transform (STFT), and enhances the magnitude of the noisy 
signal, while the phase remains noisy. Moreover, such 
algorithms are typically poor in presence of highly non-
stationary noises, mainly because they assume that spectral 
coefficients are uncorrelated in a speech frame and need to 
estimate the noise spectral distribution [9], while in recent deep 
neural network (DNN) spectral-based methods, the network 
estimated the Time-Frequency (T-F) masks i.e. ideal binary 
mask or ideal binary mask as training targets. These statistical 
assumptions about the distribution of noisy and clean STFT 
magnitude are typically dropped, while the minimum mean 
square error is used as an objective function for which a DNN 
optimizes by stochastic gradient descent. 

One solution that can mitigate these issues is to use the raw 
waveform as input. Unfortunately, in such an approach the 
computational cost increases due to a large number of samples 
per second to process e.g. 16000 samples/sec [10], in the case 
of 16 kHz sampling frequency. Over the last few decades, time-
based methods, employing deep neural networks (DNN), have 
progressively outperformed traditional spectral-based methods. 
In particular, most DNN architectures are based on convolution 
neural networks (CNN), a specialized kind of neural network 
for processing the data with 2-D grid-like topology [11]. 
Recently speech enhancement auto-encoders with recurrent 
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neural networks (RNN) and Long-Short term memory layers 
(LSTM) have been applied for speech enhancement providing 
promising results [12-13]. 

In this paper, we analyze the performance of the dilated 
fully convolutional Wave-U-Net model, proposed in [14] 
which is an extension of Wave-U-Net introduced by [15] for 
source separation. This approach is particularly appealing 
because it operates directly on the audio waveforms, therefore 
getting rid of hand-crafted features, and has been proved very 
effective in handling varieties of noise while keeping the 
computation cost affordable [15].  

This paper is arranged as follows: In section 2 we review 
the related work on speech enhancement. In section 3 the 
theoretical background of Wave-U-Net is provided. Section 4, 
presents the results of our experimental analysis while Section 
5 concludes the paper with the final discussion and remarks. 

II. RELATED WORK 

In [16], a speech enhancement algorithm was proposed 
based on an end-to-end DNN which maps directly the noisy 
raw waveforms to enhanced waveforms. The DNN 
architecture consists of 4 fully connected feed-forward layers 
and works frame-by-frame (60 samples) on isolated words.  

Authors in [17] proposed a front-end speech enhancement 
algorithm based on LSTM layers to improve the performance 
of automatic speech recognition systems. In this work, several 
architectures were tested, including: (1) a pipeline architecture 
of LSTM-based speech enhancement and ASR with sequence 
training, (2) an alternating estimation architecture, and (3) a 
multi-task hybrid LSTM network architecture. The proposed 
models are evaluated on the 2nd CHiME speech separation and 
recognition challenge, and showed significant improvements 
relative to prior results. 

In [18], a fully-convolutional encoder-decoder DNN based 
on U-Net was presented for separating singing voices. This 
system uses spectral features and estimates time-frequency 
binary masks to separate the speech sources. The main 
drawbacks of this method are that being based on STFT, many 
parameters must be tuned and adapted e.g. the window size 
and hop length, affecting the Time-Frequency resolution and 
the model accuracy. Moreover, as mentioned in the previous 
section, working on the spectral representation only enhances 
the magnitude of the noisy spectrogram while the phase is 
neglected. 

In [19], an end-to-end DNN architecture called Wave-net 
was proposed for speech enhancement with non-causal and 
non-autoregressive architecture to reduce the complexity of 
the model. The proposed model is made by residual layers 
with a dilation factor that increases by powers of 2 from layer 
to layer. Moreover, using convolutional layers makes the 
model flexible in the time dimension, leading to denoised 
variable-length audio signals.  

In [20], the authors proposed an end-to-end approach for 
speech enhancement based on a fully convolutional neural 
network. The loss used in the training overcome the gap 
between the optimization criteria used to train the network and 

evaluation process, so the model was trained in order to 
maximize the STOI metric. Experimental results show that 
the STOI metric actually improves thanks to the consistency 
between the training and validation criterion.  

In [21], S. Pascual et al., taking inspiration from the use of 
generative adversarial networks (GAN) in computer vision and 
image processing, proposed SEGAN. This model operates on 
an end-to-end pipeline showing efficiency, with both objective 
and subjective evaluations.  

Authors of [14] proposed an end-to-end CNN model for 
speech enhancement, called Wave-U-Net. This model was 
initially investigated for audio source separation. Results on 
the VCTK dataset (see section IV of this paper for more 
details) show that Wave-U-Net outperforms SEGAN, Wiener 
filters, and many other methods.              

In [22], the authors combined GAN and U-Net, proposing 
a new model architecture called UNet-GAN.  The GAN 
generator network has the same structure as U-Net, while the 
discriminator is a conventional convolutional neural network 
with batch normalization layers and Leaky ReLU activation 
function is used. The model was evaluated under low signal to 
noise ratio SNR conditions (up to -20dB) in terms of the 
evaluated metrics PESQ (i.e. perceptual evaluation of speech 
quality) and STOI (see  section  IV.B  for  the  definition  of  
STO and  PESQ  metrics]). Results demonstrate that it 
significantly improves the speech quality and substantially 
outperforms other deep models, including SEGAN, Bi-LSTM 
(trained with phase-sensitive spectrum approximation cost 
function (PSA-BLSTM)) and Wave-U-Net. 

In [23], the authors proposed a convolutional recurrent 
network for noise suppression and speaker-independent speech 
enhancement that can be integrated with real-time 
applications. This speech enhancement is a causal speech 
enhancement model, with no future information is utilized. 
They notice that the proposed model architecture has fewer 
trainable parameters than the LSTMs layers.  

Authors in [24], proposed a fully convolutional neural 
network for the speech enhancement task. This study had two 
main contributions. First, they suggested that the model 
parameters dramatically increase in the presence of the fully 
convolutional layers. Secondly, the fully connected layers 
have limited capability to preserve the correlation between the 
features, which is important to generate the output waveform.    

From this survey we can observe that speech enhancements 
still an open and interesting signal processing topic, especially 
End to End (E2E) models, which work directly on the raw  
waveform,  are  getting  very  popular  among  the  speech 
community, and showing promising results.  In this research 
we investigate the efficiency of the time-domain speech 
enhancement model based on Wave-U-Net.  We aim to 
emphasize that the time-domain based on raw waveform 
models outperforms the frequency-domain models based on 
STFT. As a novel aspect of this research we propose to 
optimize a loss function defined by a linear combination  of  
L1  and  mean  squared  error  (MSE)  between  actual and 
target outputs of the network.  We carried out experiments in 
order to estimate how it can improve the performance of the 
enhancement process. 
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III. OVERVIEW OF WAVE-U-NETWORK

In this section, we describe the theoretical concepts of the 
basic U-Net and of the Dilated Wave-U-Net structures, showing 
how dilated convolutional layers can increase the intelligibility of 
the enhanced speech by increasing the amount of context that the 
neurons can see in the input to predict the output (receptive 
field). 

A. Overview of U-Net 

Generally, CNN networks are widely used in the field of 
computer vision and image classification, where the network 
outputs are the probability of the class label to identify a 
specific image. Basically, the U-Net architecture is a fully 
convolutional neural network with downsampled 
convolutional layers on the network left side followed by 
another 1-D convolutional layer, called bottleneck layer, and 
upsampling convolutional layers on the right side of the 
network. The downsampling block in the network left side has 
the typical structure of the basic CNNs with multiple 
convolutional layers without using padding. Each 
convolutional layer is followed by a ReLU activation function 
and max-pooling layer for the purpose of downsampling. 
While the model downsamples the space by 2, it doubles the 
number of feature channels in the network.  The right side of 
the network consists of upsampling, transposed convolutional 
layers, which halves the number of feature channels. 
Moreover, skip connections are used, where each feature map 
in the upsampling side is concatenated with its corresponding 
feature maps from the downsampling block.  

Skip connections are important because they feed the input 
of one block with the output of a non-adjacent block (i.e. it 
preserves the input and output waveform signals to be at the 
same size). In this way, features maps extracted from 
downsampling blocks can be used to reconstruct the output of 
the upsampling blocks.  Fig. 2 shows the structure of the U-
Net proposed by Ronneberge for medical image segmentation 
[25].  

Fig. 2. The architecture of the U-Net network with fully convolutional and 
max-pooling layers 

B. Wave-U-Net for speech Enhancement 

Wave-U-Net is based on the architecture of U-Net, but the 
structure is modified to handle audio waveforms as an input 
i.e. it maps the noisy raw waveforms into clean signals. The 
network consists of downsampling blocks on the left side and 
upsampling blocks on the right side, but the 1-D convolutional 
layers are used due to the nature of the input (i.e. speech 
waveform). 

  The input to the Wave-U-Net is a mixture of noisy signals   
y[n] ∈ [-1, 1] L×C. The network separates this mixture signals 
into K source waveforms x1…, xk with xk ∈ [-1, 1] L×C for all 
k∈ {1… K}, where C is the number of speech channels and L 
is the number of audio samples. In the case of the monaural 
speech enhancement K = 2 and C = 1. 

Each block in the Wave-U-Net has convolutional layers 
followed by a downsampling or preceded by an upsampling 
operation. The downsampling module is a decimate operation 
which halves the dimension of the feature map. In the 
upsampling blocks, the Wave-U-Net is using some 
combinations such as linear interpolation and transposed 
convolutions. All the layers, except for the last in the 
upsampling part, have a Leaky ReLU activation with a 
negative slope = 0.1. The last layer (block 1 on the upsampling 
path) has a hyperbolic tangent (Tanh) activation. Fig. 3 shows 
the basic structure of the Wave-U-net architecture, where the 
left side corresponds to the 1-D convolutional layers 
downsample blocks, while the right side represents the 1-D 
transpose convolutional layers upsampling blocks.   

Fig. 3. The architecture of the Wave-U-Net network 

C. Dilated Convolution 

The dilation operation was firstly proposed for the wavelet 
transform [26] and then was applied to convolutional layers 
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and called dilated convolution. The mechanism of dilation is 
inflating the kernel by adding spaces between the kernel 
elements. It allows increasing the receptive field size to 
capture a larger context for the signal reducing, at the same 
time, the computation required. Consider a 1-D input signal 
called z[i] is subjected to a dilated convolution operation to 
produce an output signal h[i] with a filter w[k] as shown in (3). 

  



K

k

kwrkizih
1

][][][    (3) 

Where r is the dilation rate and k the length of the filter 
respectively. Note that when r = 1, the dilated convolution is 
equivalent to the ordinary convolution. 

Fig. (4) and Fig (5) show the conventional convolution 
operation and the dilated convolution operation with r = 1, 2, 4 
on 1-D signal where the stride = 1 and kernel size = 3.  

In Fig. 4 after three sequential conventional convolution 
operations, the receptive field is equal to seven, which is linear 
with the number of layers. On the contrary, when the dilation 
rate increases exponentially from r = 1, 2, 4, as shown in  
Fig. 5, the receptive field will also increase to ensure that the 
larger context of the 1-D signal will be captured.    

Fig. 4. Three hidden layers of convention convolution operation of CNN.  

Fig. 5. There hidden layers dilated convolutional operation with dilated rate 
increasing exponentially as (r = 1, 2, 4). 

D. Loss Function 

Following one of the main streams in neural speech 
enhancement, the Dilated Wave-U-Net model is trained using 
a mean squared error loss (MSE) computed on the target and 
enhanced samples. 

2)(
1

pr xx
n

MSE     (4) 

Where pr xxn ,,  are the number of training samples, the 

clean signals, and the enhanced signals respectively. 

In this work, we also investigate the use of a mean absolute 
error (L1) loss. Basically, L1 loss, which is often used for 
regression models, is calculated as the sum of absolute 
differences between the target and the predicted variables as 
in (5).        

  pr xx
n

L
1

1   (5) 

Finally, we also investigate linear combination between the 
two losses in (4) and (5), as shown in (6) with different 
weights denoted as α. 

n

xxxx
L

prpr
T

 


)1()( 2 
 (6) 

IV. EXPERIMENT

A. Dataset 

We evaluate the performance of the Dilated Wave-U-Net 
on two different datasets. 

The first dataset is VCTK [27], which is also used in the 
original paper [14]. The dataset is publicly available and 
features 30 speakers from the Voice Bank corpus: 28 speakers 
are part of the training set while the test set includes the 
remaining 2 speakers. The clean signals are contaminated with 
10 different types of noise (2 artificial and 8 from the Demand 
database [28]) at 4 different SNRs (15, 10, 5, 0 dB), resulting 
in 40 different conditions. There are approximately 10 
different sentences in each condition per training speaker. The 
test set consists of 20 different conditions obtained by 
considering 5 types of noise (all from the Demand database) at 
4 SNR (17.5, 12.5, 7.5, and 2.5 dB). There are around 20 
different sentences in each condition per test speaker. The test 
set is totally different from the training set in terms of speakers 
and conditions. 

The second dataset is a noisy version of Librispeech-100, 
which is 100 hours of reading English speech with a sampling 
rate of 16 kHz [29]. We selected 10 speakers, resulting 
approximately 10 hours of clean speech signals. The noisy 
dataset is obtained by adding noises from the Microsoft 
Scalable Noisy Speech Dataset (MS-SNSD) [30], which is 
available at [31]. MS-SNSD has 25 categories of noisy sounds. 
The Librispeech dataset is contaminated at different SNRs 
(5dB, 7.5dB, 12dB and 15dB), uniformly distributed. The 
dataset is split into train, validation, and test sets considering 
60%, 20%, and 20% of the data respectively. 

B.  Evaluation Metrics 

The performance of the enhancement process is evaluated 
using the following metrics for speech intelligibility and 
quality:  

 PESQ: Perceptual evaluation of speech quality, using
the wideband version recommended in ITU-T. It is a
widely used objective quality measurement standard
algorithm. The first step in calculating PESQ metric is
time alignment between the referenced signal and the
processed signal, then the signals are mapped to an
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auditory representation using a perceptual model based 
on power distribution over T-F and compressive 
loudness scaling and then their differences are taken. 
Positive differences indicate that components such as 
noise are present, whereas negative differences indicate 
that components have been omitted. With PESQ, 
different scaling factors are applied to positive and 
negative disturbances in order to generate the so-called 
symmetrical and asymmetrical disturbances. The final 
PESQ quality score is obtained as a linear combination 
of the symmetrical and asymmetrical disturbances, with 
weights optimized using telephony data. The range of 
the PESQ metric lies between (-0.5 to 4.5). 

 STOI: The short-time objective intelligibility metric is
based on a correlation coefficient between the temporal
envelopes of the time-aligned clean signal and
enhanced speech signal in short-time overlapped
segments. Firstly the signals are decomposed using 1/3
octave filter bank followed by segmentation into short-
time windows, normalization, clipping and finally
compared by means of correlation coefficient.  The
obtained correlation coefficients correspond to short-
time intermediate intelligibility measures for each of
the segments, which are then averaged to one scalar
value corresponding to the predicted speech
intelligibility for the processed signal. The STOI
proposed to assess the intelligibility of time-frequency
weighted noisy speech and enhanced speech. The STOI
metric score ranges from 0 to 1.

 SNR: The signal to noise ratio is the most popular
parameter used to measure the level of the desired
signal to the level of background noise, and its unit of
expression is typically decibels (dB) its range from 0
to ∞.

The higher score for these metrics means better quality and 
intelligibility.  

C. Training 

As mentioned in the previous section, the network input 
consists of a mixture speech signal while its corresponding 
clean speech signal is used as a target. Due to the variation of 
length of the signals, they are chunked taking 16384 
continuous-time frames randomly selected from the noisy and 
clean signals. 

The model is trained using Adam optimizer with learning 

rate = 410 , decay rates β1 = 0.9 and β2 = 0.999. The batch 
size is set to 10 and the Leaky ReLU activation function is 
used with negative slope α = 0.1. The model architecture is 
composed of 12 convolutional layers with kernel size = 5, 
stride = 1, padding = 7, and dilation rate = 1 in the 
downsampling blocks. The resulting dimensions per layer are 
16384, 819, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 
and 4. While in the upsampling blocks kernel size = 5, stride = 
1, padding= 2 and batch size = 25. Our implementation is 
in PyTorch and is derived from modifications of an open 
source repository [32]. 

D. Results 

 Table I shows the results of the different evaluation 
metrics for the VCTK dataset and contaminated Librispeech 
data. All the metrics were computed on both the noisy and the 
enhanced signals using MSE loss and L1 loss. 

TABLE I. PESQ, STOI, AND SNR OF THE DILATED WAVE-U-NET METHOD ON 

VCTK AND CONTAMINATED LIBRISPEECH USING MSE AND L1 LOSSES 

Datasets Loss PESQ STOI SNR

VCTK

Unproc. 1.84 0.92 22.2 
L1 2.27 0.78 42.75 

MSE 2.36 0.801 44.31 

Librispeech

Unproc. 1.51 0.78 16.6 

L1 1.79 0.89 30.5 

MSE 2.01 0.9 30.9 

According to the results, the MSE loss function clearly 
outperforms the L1 norm loss on both datasets. For the VCTK 
dataset, the MSE loss outperforms the L1 loss in terms of 
PSEQ with 2.36 and 2.27 respectively, while for SNR metric 
the scores are 44.31 and 42.75 for MSE loss and L1 loss 
respectively. In the same manner, the STOI metric obtained 
using MSE loss outperforms the score obtained using L1 loss 
with 0.801 and 0.78 respectively. 

In the same context, for the contaminated LibriSpeech 
dataset, the MSE loss exhibits superior performance over the 
L1 loss in terms of PESQ metric, with 2.01 and 1.79 for MSE 
and L1 losses respectively. Despite the noticeable 
improvement in the PESQ metric score, both STOI and SNR 
metrics show slight improvement using MSE loss with scores 
of 0.9 and 30.9 respectively. 

From the above results, we can conclude that using MSE 
loss function obtained the highest scores in terms of PESQ and 
SNR metrics compared to the unprocessed signals (Unproc.) 
scores.    

Moreover, we tested the combination of the L1 and MSE 
loss functions with different weight coefficients α (i.e. α = 0.8, 
0.2), and considering different learning rates (0.1, 0.0001, 
0.000001). The results are given in Table II.  

TABLE II. PERFORMANCE OF THE DILATE-WAVE-U-NET BASED ON 

COMBINED LOSS WITH DIFFERENT WEIGHTS AND LEARNING RATES ON 

LIBRISPEECH  

Learning 
rate 

α STOI PESQ SNR 

1101   0.8 0.88 1.67 24.14
0.2 0.87 1.63 19.92 

4101   0.8 0.9 1.91 31.75 
0.2 0.89 1.86 30.57 

6101   0.8 0.83 1.34 20.85 
0.2 0.82 1.30 19.51 

As expected, the learning rate affects the overall 

performance. Using the learning rate equals to 4101  achieve  
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better performance than others tested learning rates especially 
in the PESQ and SNR metrics with 1.91 and 31.75 
respectively. While, referring to the weight coefficient α, 
increasing the MSE loss weight tends to better scores for all 
metrics.  

In addition, we investigate the performance of both the 
VCTK model based on the MSE loss (M0) on the 
contaminated LibriSpeech dataset and the LibriSpeech model 
based on the MSE loss (M1) on the VCTK dataset. The results 
are shown in Table III. 

TABLE III. AVERAGE PERFORMANCE OF PESQ, STOI FOR THE M0  
AND M1 MODELS  

Model M0 M1 

PESQ 
(Clean –Noisy) 1.51 1.84 

PESQ 
(Enhan –Noisy) 1.39 1.42 

STOI 
(Clean -Noisy) 0.78 0.92 

STOI 
(Enhan-Noisy) 0.71 0.67 

According to the results, both models (M0) and (M1) fail 
to improve both PESQ and STOI metrics, but the 
contaminated LibriSpeech is slightly affected, compared with 
the VCTK dataset tested with (M1). As expected, this is due to 
the different sizes of both datasets and different types of noise 
used to train both models.   

Finally, we compare the results obtained with the Dilated 
Wave-U-Net on the VCTK dataset with those achieved with 
the adversarial-based and time-based approaches. Table IV 
shows these results. 

TABLE IV. PERFORMANCE OF THE DILATE-WAVE-U-NET AGAINST STATE-
OF-THE-ART BASELINES ON VCTK  

Method STOI PESQ SNR 
SEGAN [21] 0.930 2.160 - 
Wiener [33] - 2.22 - 
v-GAN [34] 0.790 1.410 - 
CNN [35] 0.620 1.120 - 

CNN-GAN [35] 0.930 2.340  
Dilated Wave-U-Net 0.801 2.360 44.31 

All the results from Dilated Wave-U-Net are obtained by 
re-running the model with different hyper-parameters w.r.t.   
[14].   Furthermore,  the  total  number of  parameter  weights  
of  the  network  is  approximately 10  million.  According to 
the results in TABLE IV, it is clearly that the Dilated Wave-U-
Net model outperforms the classical method e.g. Wiener 
proposed in [33] in terms of PESQ metrics with scores 2.360 
and 2.22 respectively. In the same manner, the Dilated Wave-
U-Net outperforms the state-of-the-art GANs proposed in [21, 
34-35]. Regarding to the STOI metric, the Dilated Wave-U-
Net outperforms the proposed adversarial method proposed in 
[34] and the traditional CNN method proposed [35] with 
scores 0.801, 0.790 and 0.620 respectively. In contrast the 
original SEGAN proposed in [21] and CNN-GAN [35] 

outperforms the Dilated Wave-U-Net with 0.930 and 0.801 
respectively.  

V. CONCLUSION  

In this paper, we investigated the performance of Dilated 
Wave-U-Net using two datasets: VCTK and a contaminated 
version of Librispeech. Results show that the Dilated Wave-U-
Net outperforms the most recent architectures for speech 
enhancement task based on the time-domain approach. The 
obtained results outperform the state-of-the-art methods, 
which means that there is a possible improvement for these 
models in the speech enhancement task.  

In the future work, we will expand our experiments with 
alternative scenarios i.e. a larger Librispeech dataset with low 
SNR ratios and other noisy datasets and focus on fine-tuning 
the model during the training configuration with a view to 
updating the compromise between generalization and 
accuracy. On the other side, other loss functions will be 
investigated in order to improve enhancement quality. Finally, 
we will integrate this model with a back-end ASR system to 
train the back-end ASR with enhanced signals estimated from 
the front end ASR and check the obtained word error rate 
score. This will show to what extent the speech enhancement 
module can robust the ASR system. 
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