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Abstract—Distribution of cloud computing capabilities at the 
edge of the mobile network addresses the requirements for 
reduced latency and more efficient usage of network resources. 
Opening the network edge for third parties enables rapid 
deployment of innovative applications. In this paper, capabilities 
for open access to charging function at the mobile edge are 
studied. New API for online charging is developed which enable 
MEC system to collaboratively interact with network functions 
responsible for session management and real time charging. The 
proposed interfaces follow the adopted Representational State 
Transfer (REST) used to expose and to access edge cloud 
services. The API is described by typical use cases, data model 
and information exchange, and resource structure. 
Implementation aspects related to modeling the charging 
application logic and charging status supported by the network 
are discussed. The latency injected by the proposed API is 
evaluated theoritically. 

I. INTRODUCTION  

The fifth generation (5G) networks are designed to address 
the requirements of large diversity of use cases. The 
expectations from 5G are to provide enhanced broadband 
service, ultralow latency, and to support connectivity of huge 
number of devices in dense environment, which in turn 
requires revolutionization of charging systems too. To achieve 
these expectations, 5G design is fundamentally different from 
its predecessors embedding key technologies such as 
virtualization, network slicing, and microservices. 
Virtualization provides cloud environment for both network 
components and charging systems enabling auto-scaling and 
fault tolerance. Network slicing allows creation of virtual 
networks which share the same physical infrastructure and 
thus supports different use cases opening the door for new 
charging schemes. Microservices provide self-healing and low 
latency for network components distributed at the network 
edge which imposes charging systems to adapt to the same 
operating modes. In 5G, online charging system and offline 
charging systems are converged, and the charging interface is 
a service based on HTTP/JSON [1]. 5G system enables pricing 
based on peak data rates, rate of user/device mobility, mobile 
data volume, service deployment time, end-to-end latency, 
number of connected devices, energy efficiency, etc. [2]. 

The exponential increase in Internet of Things (IoT) traffic 
will result in increased number of charging transactions and a 
massive variety of transactions which requires their offloading 
and distributed processing. Distribution of charging 
functionality at the network edge provides scalability, 
deployment flexibility and evolution. In this paper, the cloud 
capabilities of the network edge are studied to provide 
charging services, using Multi-access Edge Computing (MEC) 
technology. 

MEC provides cloud computing and storage capabilities in 
the vicinity of user’s point of attachment to the network [3]. 
5G support for MEC includes a significant number of enablers 
such as network capability exposure, local routing and traffic 
steering, session and service continuity, quality of service and 
charging etc. The exposure of policy and charging 
functionality enables MEC related user traffic to receive the 
required quality of service treatment and to be charged 
appropriately [4]. 

Current research is focused on a new MEC-based service 
which enables applications to apply flexible online flat-free 
and volume-based charging schemes. The service provides 
open access for third party applications to charging functions.  

Next sections describe the related works, present the 
overall service functionality by typical use cases, and specify 
the service by data model and interface definition. Service 
state models highlight some implementation issues. The 
injected latency by the service is evaluated theoretically as a 
key performance indicator. 

II. RELATED WORKS 

Traditionally, mobile networks adopted different 
architectures for offline and online charging models, where 
users chose the payment mode. 5G networks bring more 
flexibility by combining online and offline systems. 5G 
supports convergent architecture for both offline and online 
charging mode, and the choice of online or offline mode 
depends on the service needs [5], [6]. The 5G charging 
architecture defines services, operations and procedures of 
charging using service-based interface specified in [7], [8]. 
Flexible charging architecture that supports network slicing is 
presented in [9]. 

The distributed deployment of core network functions in 
different edge locations addresses some of the performance 
issues associated with the centralized control. Due to vicinity 
to the edge, distributed core architecture reduces latency, saves 
backhaul resources, improves scalability and supports flexible 
creation of innovative IoT services. Core network functions 
can be virtualized and run as virtual machines. In case of 
distributed core, MEC applications can share the same 
virtualized infrastructure. The access for MEC applications 
and services to distributed core functions is provided by 
Network Exposure Function (NEF) [10]. Regarding charging 
functionality, NEF provides Nnef_ChargeableParty service 
which enables management of the chargeable party [11]. 

MEC adoption sets new business opportunities and 
challenges for innovative smart charging strategies [12]. 
Examples include charging mechanisms for virtual resource 
usage, third party pricing, revenue models for sharing the 
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physical infrastructure etc. In [13], [14], charging and billing 
models for MEC applications are described. Different MEC 
deployment scenarios require specific billing schemes which 
are presented in [15], [16], [17]. Pricing scheme for MEC-
based mobility management enabling flexible charging is 
proposed in [18]. In [19], the authors describe an architecture 
enabling MEC billing and charge tracking.  

Billing function as a service which is a key feature of MEC 
is discussed in [20]. There exist also product solutions for 
billing of IoT services deployed the network edge [21]. MEC-
based approach to open access to sponsored data connectivity 
is presented in [22].  

The main contribution of the current research is the 
extension of capabilities provided to third party applications to 
manage the chargeable party at the network edge. A MEC-
based approach to open access to charging functions is 
proposed which supports amount and volume reservation, 
reservation charging and reservation release. Using the 
proposed API, it is possible to account for each service and to 
provide accurate billing for multimedia sessions and 
messaging, as well as to determine the customer’s usage.  
Deployed at the edge, the API features latency reduction 
required for real-time interactive media. Using the API, 
analytic applications may allow to deploy more intelligent and 
flexible charging and billing.  

III. CHARGING AS A SERVICE 

5G system supports traditional charging models based on 
session and based on event. Event based charging model is 
related to user transactions such as message sending, 
publishing presence information, subscription to presence 
information, downloading a resource etc., and the service 
value is preliminary known. Session based charging model is 
applied when the service value depends on the used volume of 
network resources (measured in time units or number of sent 
or received bytes). 5G system supports also new charging 
models such as flow-based charging and quality of service 
(QoS) based charging as a part of Policy and Charging Control 
functionality.  

In this paper, a new mobile edge service called Edge-
Based Charging (EBC) service is defined. The service enables 
mobile edge applications to reserve a currency amount from a 
user account, to add/reduce an amount from existing 
reservation, to charge a reservation, to release a unused 
reservation, request conversion of given volume to currency 
amount, to reserve an amount from user account specified in 
volume, to reserve additional volume, to charge the reserved 
volume, to refund the user account by left in the reservation.  
The proposed service may be beneficial for IoT applications, 
online gaming, multi-view live streaming of sport events or 
musical performance, augmented and virtual reality.  

An example of an application scenario using the proposed 
API is a live streaming of World League football match, which 
is illustrated in Fig.1. A user who wants to watch the football 
match establishes a secured connection with the service 
provider supplying his mobile number and other information. 
Before service provisioning, the user wants to know the cost of 
the streaming service and the provider’s charging application 
using the EBC interfaces (getAmount) interacts with the rating 

engine of the mobile operator. The returned charging 
information may depend on the user location, time of day, user 
subscription etc., and it is displayed at the user terminal.  

 

Fig.1 Message flow of advice of charging, volume reservation, charging, 
additional reservation, and refund of unused reservation 

The user activates the streaming service and the service 
provider’s application reserves network resources for the 
match duration (reserveVolume) to ensure the service 
accountability. Then the application subscribes with the EBC 
service to receive notifications related to charging events 
(subscribeChargingEvents), initiates a session between the 
user equipment (UE) and the streaming server (create-
ASsession),, and subscribes for session related notifications 
(subscribeSessionEvents). The streaming service starts, and 
the provider’s charging application being notified about 
charging event (notifyChargingEvent) charges periodically 
against the reservation (chargeReservation). It happens that the 
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match must last longer than the allotted time because both 
teams have an equal score and there is overtime. So, the 
provider’s charging application reserves additional amount 
(reserveAdditionalVolume) and the user continues watching 
the match. The match ends with a goal scored by one of the 
players and the charging application is notified, and then 
releases the unused amount in the reservation 
(releaseReservation). 

The access of the EBC service to the charging functionality 
in the operator’s network is through the NEF 
Nnef_ChargeableParty service. The Nnef_ChargeableParty 
service requests to become a chargeable party for a user 
session. To initiate a session between the user and Application 
Service (AS) which provides the service and to provide a 
specific quality of service (QoS) for the AS session, the EBC 
service uses the NEF Nnef_AFsessionWithQoS service [11].  

IV. SERVICE RESOURCES AND SUPPORTED METHODS 

Following RESTful principles for service design, all 
concepts related to charging are represented as resources 
located by Uniform Resource Identifiers (URIs).  

Fig.2 shows the EBC service resource URIs where the root 
service URI can be discovered using service discovery 
register.  

The chargingSubscriptions resource and sessionSubs-
criptions resource represent all subscriptions respectively for 
charging and session related events. A new {charging-
SubscriptionID} resource and a new {sessionSubscriptionID} 
resource, which represent existing subscription for charging or 
session events, are created, when the application sends an 
HTTP POST request to the parent resource. The 
chargingSubscriptionData data type defines charging event 
filters, user ID, charging ID, and the address where the 
application wants to receive notifications. The session-
SubscriptionData data type defines session event filters, user 
ID, session ID, and the application callback address. The 
reserveAmounts resource represents all requests for amount 
reservations. A new {reserveAmountID} resource represent-
ting an existing amount reservation request is created when the 
applications sends an HTTP POST request to the 
reserveAmounts resource with message body containing user 
account ID and the information on the charge to be reserved. 
The 201 Created message contains reservation ID. The 
chargeReservations resource represents all requests for 
charging against the reservations and the {charge-
ReservationID} resource represents an existing request for 
charging a reservation. When the application creates a new 
{chargeReservationID} resource, it uses the reservation ID 
and information on the reservation to be charged. The 
reserveAdditionalAmounts resource represents all requests for 
reservation extension and the {reserveAdditionalAmountID} 
resource represents an existing request for reservation 
extension. The application uses an HTTP POST request to 
create a new {reserveAdditionalAmountID} resource 
providing the reservation ID and information on the charge to 
be added to the reservation. The releaseReser-vations and 
{releaseReservationID} resources represent respectively all 
and an existing request(s) for release of the left reservation. 
The getAmounts resource serves as all requests for converting 
given volumes, and the {getAmountID} resource serves as an 
existing request for converting given volume. An HTTP POST 

request  to the getAmounts resource creates a new request for 
converting volume and the request body contains 
ConvertAmountInfo data structure defining the user account to 
be charged, the volume to be converted and parameters to be 
used for rating (e.g. “service”, “unit”, “contact”, “operation”).  

 

Fig.2 EBC service resources 

The reserveVolumes resource, reserveAdditionalVolumes 
resource, chargeVolumeReservations resource and 
releaseVolumeReservations resource are related to manage-
ment of reservations charging by volume and represent all 
requests respectively for reservations amounts of user 
accounts, for adding volumes to existing reservations, for 
charging reservations and for returning of funds left in 
reservations. Applying an HTTP POST request to the 
respective resource creates a new child resource. The 
reserveVolumeData data type defines information required to 
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create a new reserveVolumeID resource and contains the user 
account, which is subject to reservation, the volume of 
reservation, the description information to appear on the bill 
and parameters to perform rating. The reserveAddVolumeData 
type defines information required to add a volume to an 
existing reservation and contains reservations identifier, the 
volume to be added to the reservations and billing text. The 
chargeReservationData data type is used to charge a 
reservation and contains reservation identifier, the volume to 
be charged, billing text and reference code which uniquely 
identifies the request in case of disputes. The release-
ReservationData data type points the reservations identifier 
and it is used to return funds left in a reservation. 

All resources support also HTTP GET method which 
retrieves information about the respective resource. The leave 
resources support HTTP PUT method which updates an 
existing resource and HTTP DELETE method which deletes 
an existing resource. 

V. CHARGING MODELS 

Modeling the state of a charging transaction is a part of 
EBC service implementation.  

 

 

Fig.3 Charging state model, supported by a mobile edge charging application 

Fig.3 shows the simplified model representing the state of 
charging from the application point of view. On service 
trigger, the application makes initial reservation and 
subscribes to receive charging related notifications. In case of 
successful reservation, the application starts a session and 
subscribes for notifications about session related events. When 
the reservation is consumed, the application requests charging 
the reservation and makes additional reservation. The 
application is notified about session stop, it requests charging 
for the consumed resources and releases the left in the 
reservation. 

Fig.4 shows a simplified charging state model supported 
by the MEC platform. To make reservation in the network, the 
EBC service invokes Nnef_ChargeableParty_Create operation 
of NEF. Notifications about charging related events are 
provided to the EBC service by Nnef_ChargeableParty_Notify 
operation. To charge the reservation and to make additional 
reservation the EBC service invokes 
Nnef_ChargeableParty_Update operation. Following the 
application instructions, the EBC service invokes 
Nnef_AFsessionWithQoS_Create operation to create an 
Application Server session and to provide specific QoS. The 
EBC service is notified about session related events by 
Nnef_AFsessionWithQoS_Notify operation. 

 

 
 

Fig.4 Charging state model, supported by a mobile edge platform 
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Model verification is done by formal model definition 
using the concept of finite state automata (FSA) and the 
concept of weak bi-simulation [23]. An FSA is defined as a 
quadruple of a set of states, a set of labels, a state of labeled 
transitions, and a set of initial states. The concept of bi-
simulation is used in parallel programming to formalize the 
idea of behavioral equivalence of processes. In the following 
formal definitions, short names are given in brackets. 

By FApp = (SApp, АctApp, →App, s0
App) it is denoted the FSA 

representing the charging state model supported by a mobile 
edge application, where: 

- SApp  = {Null [sA
1], WaitInitialReservation [sA

2], 
WaitSubscription [sA

3], WaitSessionStart [sA
4], 

WaitSessionStop [sA
5], WaitIntermediateCharging [sA

6], 
WaitAdditionalReservation [sA

7], WaitFinalCharging [sA
8], 

WaitReleaseReservation [sA
9], WaitUnsubscrbe [sA

10]};  

- ActApp = {serviceTrigger [tA
1], reserveRes [tA

2], 
subscribeChargingRes [tA

3], notifyChargingReq(initial) 
[tA

4], createSessionRes [tA
5], subscribeSessionRes [tA

6], 
notifySessionReq(start) [tA

7], 
notifyChargingReq(intermediate) [tA

8], chargingRes[tA
9], 

reserveAdditionalRes [tA
10], notifySessionReq(stop) 

[tA
11], releaseReservationRes [tA

12], 
unsubscribeChargingRes [tA

13], unsubscribeSessionRes 
[tA

14]}; 
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- s0
App = {sA

1}.  

By FMec it is denoted the charging state model supported by 
the MEC platform ТMec = (SMec, АctMec, →Mec, s0

Mec) where: 

- SMec  = {Idle [sM
1], InitialReservation [sM

2], SessionPending 
[sM

3], OngoingSession [sM
4], SessionCharging [sM

5], 
AdditionalReservation [sM

6], AdditionalReservation 
[sM

6], ReleaseReservation [sM
7]};  

- ActMec = { reserveReq [tM
1], 

Nnef_ChargeableParty_CreateRes [tM
2], 

subscribeChargingReq [tM
3], notifyChargingReq [tM

4], 
createSessionReq [tM

5],  
Nnef_AFsessionWithQoS_Create_Res [tM

6], 
subscribeSessionReq [tM

7], notifySessionRes [tM
8], 

Nnef_ChargeableParty_NotifyReq (intermediate) [tM
9], 

Nnef_AFsessionWithQoS_Notify_Req(stop) [tM
10], 

chargingReq [tM
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- s0
Mec= {sM

1}.  

Strong bi-simulation requires strict matching of transitions 
in both FSAs. In weak bi-simulation, invisible (internal) 
transitions may be disregarded. 

Proposition: FApp and FMec are weakly bi-similar i.e. they 
expose equivalent behavior. 

Proof: Let R ⊆ (S App x SMec) where R = {(s1
A, s1

M), (s2
A, 

s2
M), (s5

A, s4
M), (s6

A, s6
M), (s7

A, s6
M), (s9

A, s7
M)}. The states in R 

reflect no charging and no session, initial reservation for the 
session, ongoing session, charging the session, additional 
reservation for the session, and release reservation for the 
ended session. Then the following matching between 
transitions of FApp and FMec can be identified: 

1. On service trigger, the application makes initial 
reservation, subscribes for charging events, receives  a 
notification about initial charging status, and creates a 
session between the user and application server: for {(sA

1 
tA

1 s
A

2) ⊓ (sA
2 t
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M
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3 t
M
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M

4)}. 
2. The application subscribes for session events and receives 

notifications: for {(sA
5 t

A
6 s

A
5) ⊓ (sA

5 tA
7 s

A
5)} {(sM

4 t
M

7 
sM

4) ⊓ (sM
4 t

M
8 s

M
4)}. 

3. During the session, the granted resource are consumed, 
the application is notified, and it requests intermediate 
charging: for (sA

5 t
A

8 s
A

6)  {(sM
4 t

M
9 s

M
4) ⊓ (sM

4 t
M

4 sM
4) 

⊓ (sM
4 t

M
11 s

M
5) ⊓ (sM

5 t
M

12 s
M

5)}. 
4. The application requests additional reservation: for {(sA

6 
tA

9 sA
7) ⊓ (sA

7 tA
10 sA

5)}  {(sM
5 tM

13 sM
6) ⊓ (sM

6 tM
12 

sM
4)}.  

5. The session ends in the network, the application is 
notified, requests final charging and refund of unused 
reservation: for {(sA

5 t
A

11 s
A

8) ⊓ (sA
8 t

A
9 s

A
9)}  {(sM

4 tM
10 
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M
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7)}. 
6. The application terminates its subscription for charging 

events and session events: for {(sA
9 t

A
12 s

A
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10 t
A

13 
sA

1) ⊓ (sA
10 tA

14 s
A
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13 sA
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7 tM

12 sM
1) ⊓{(sM

1 t
M

15 s
M

1) ⊔ (sM
1 t

M
16 sM

1)}. 

Therefore, FApp and FMec are weakly bi-similar. ■ 

The concept of bi-similarity is useful at the phase of 
software verification to test the process parallel execution and 
at the phase of system validation to prove compliance of 
software specification with its implementation. 

VI. API PERFORMANCE EVALUATION 

It is widely recognized that the main MEC Key 
Performance Indicators (KPI) for service providers and mobile 
operators are delay improvement thanks to the proximity of 
users, network performance and cost saving due to more 
efficient usage of transport and backhaul network, energy 
efficiency due to usage of small servers, and more efficient 
management of computation and networking resources due to 
network function virtualization [24]. 

In [25], MEC performance metrics are described, which 
demonstrates the technology benefits. MEC metrics are as 
functional and non-functional ones. Functional MEC metrics 
impact on user perception and include latency, energy 
efficiency, throughput, loss rate, jitter etc. Non-functional MEC 
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metrics depend on deployment and management scenarios and 
consider service lifecycle, service fault tolerance and 
availability, processing load etc. 

In this Section, the focus is on latency injected by the 
proposed API.  It is evaluated theoretically so called Service 
Delivery Time (SDT). With the proposed EBC service, the 
charging application is triggered on notification about 
chargeable event occurred in the network and it sends 
instructions for charging. So, the latency injected by the EBC 
service is the time which is taken to a network request (e.g. 
notification about session start) to reach the application, being 
processed and transferred back to the network (e.g. charging 
instructions sent by the application). SDT is a sum of Service 
Processing Time (SPT) and Round-Trip Time (RTT).  

SPT is a non-functional metric representing the time to 
process the request and it depends on computational load. RTT 
is a functional metric and it is the time taken for a request, 
generated from the network to go to the charging application be 
replied and travel back.  

Fig.5 shows the sequence diagram illustrating the message 
exchange used to evaluate the EBC latency. Upon occurrence 
of chargeable event, the network notifies the EBC service and 
it is the beginning of SDT period. 

 

 
Fig.5 Typical message exchange in the context of EBC service 

 
 The EBC service sends a POST request to the 

application’s callback address to notify the application about 
the chargeable event. The time budget required for notification 
is a sum of the time required by the EBC service to create the 
notification request (Tnotify

n), the time for norification request 
transfer, and the time for notification request processing by the 
application (Tnotify

a), plus the time required by the application to 
create the notification response (T204

a), the time for notification 
response transfer, and the time for notification response 
processing by the EBC service (T204

a). The time budget 
required for sending charging instructions is a sum of the time 
required by the application to create the charging request 
(Tcharge

a), the time for charging request transfer, and the time for 
charging request processing by the EBC service (Tcharge

n), plus 
the time required by the EBC service to create the charging 
response (T200

n), the time for charging response transfer, and 
the time for charging response processing by the application 
(T200

a). As the mobile edge application and the EBC service run 
on the same virtualized platform, the message transfer time is 
negligible. So, the SDT may be theoretically evaluated as: 

SDT=Tnotify
n+Tnotify

a+T204
a+T204

n+Tcharge
a+  

                             +Tcharge
n+T200

n+T200
a. (1) 

An example of a POST request for notification about 
chargeable event, where the JSON body of the request 

contains information about the time stamp, session ID, user 
ID, and event type, looks like the following: 

POST /app/sessions/notifications/70107427‐c772‐4122‐a1a8‐
e69abe63ca10 HTTP/1.1 
host: [::1]:8080 
user‐agent: Vert.x‐WebClient/3.9.1 
content‐type:application/json 
accept:application/json 
content‐length: 149 
  
{"timeStamp":"2020‐07‐10T13:50:11.930Z","session":"c17d668e‐
2eca‐4387‐9c82‐5886a764a836","eventType":"sessionStart", 
"userID":"ac361f9c@example.com"} 

The respective response of the POST request for 
notification about chargeable event looks like the following: 

HTTP/1.1 204 No Content 
Location: 70107427‐c772‐4122‐a1a8‐e69abe63ca10 

An example of a POST request with charging instructions, 
where the JSON body of the request contains information 
about the session ID, the user account ID, a reference code (in 
case of disputes), the volume, and the units, and the respective 
response look like the following: 

POST /ebc/v1/reserveAmounts HTTP/1.1 
user‐agent: Vert.x‐WebClient/3.9.1 
content‐type: application/json 
accept: application/json 
content‐length: 189 
host: ::1:8088 
  
{"session":"70107427‐c772‐4122‐a1a8‐
e69abe63ca10","userAccountID":"7ca87145‐c349‐480f‐ab7c‐
e0adf0f2c7ef","units":"minute","volume":20,"referenceCode":"54fd
e971‐30a7‐4d91‐8152‐7566623c02ec"} 
 
 
HTTP/1.1 201 Created 
location: http://::1:8088/ebc/v1/reserveAmounts/e5bb38b0‐9adc‐
4b9c‐a659‐0daef7b443d9 
content‐type: application/json 
content‐length: 246 
  
{"session":"70107427‐c772‐4122‐a1a8‐
e69abe63ca10","userAccountID":"7ca87145‐c349‐480f‐ab7c‐
e0adf0f2c7ef","units":"minute","volume":20,"referenceCode":"54fd
e971‐30a7‐4d91‐8152‐
7566623c02ec","reserveAmountID":"e5bb38b0‐9adc‐4b9c‐a659‐
0daef7b443d9"} 

 
We use this typical message exchange in the context of 

the proposed EBC service to evaluate theoretically the injected 
latency. The message creation/processing time is a product of 
input message size in bits (L), the complexity of the message 
as necessary CPU cycles per bit (X) over the MEC host’s CPU 
frequency (f). Let, the MEC host’s CPU clock speed is of 3.2 
GHz and the complexity is 1000 cycles per bit [26].  As the 
charging application and EBC service are executed on the 
same MEC host, the time budget required to create a message 
and the time budget required to process the same message may 
be regarded as equals. So, 

         SDT= 2Tnotify+2 T204+2Tcharge+2T200. (2) 
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                    Tnotify=LNotify.X/f = 0.87 ms (3) 

                       T204=L204.X/f = 0.003 ms (4) 

                      Tcharge=Lcharge.X/f = 0.87 ms (5) 

                         T201=L201.X/f = 1 ms (6) 

So, the injected latency for sending a notification about a 
chargeable event to a mobile edge application and receiving 
charging instruction by the network is theoretically evaluated 
as SDT= 5.5 ms. 

VII. CONCLUSION 

The variety of use cases supported by 5G system requires 
development of flexible charging systems too. The open access 
to charging functionality creates new opportunities to 
application and content providers which can play profitable and 
complementary roles. The edge computing which ensures more 
efficient network operation, better service delivery and 
personal user experience may contribute to better 
monetarization of mobile broadband experience. Delegating the 
charging functionality to mobile edge applications enables 
increase of the edge responsiveness and thus proactive user 
experience maintenance. 

The paper presents an approach to open access to charging 
functions at the edge of the mobile network. Using the 
proposed mobile edge interfaces, charging applications may 
reserve amounts or volumes, may charge reservation, may 
extend reservation, and may refund unused reservations. Future 
work will be aimed at extending the proposed functionality 
with capabilities of direct charging by volume and amount as 
well as to emulate the proposed functionality.   
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