
Flexible Charging Using Edge Computing

Evelina Pencheva, Ivaylo Atanasov, Denitsa Velkova
Technical University of Sofia

Sofia, Bulgaria
emails: {enp, iia}@tu-sofia.bg, denitsa.velkova@balkantel.net

Abstract—Distribution of cloud computing capabilities at the
edge of the mobile network addresses the requirements for
reduced latency and more efficient usage of network resources.
Opening the network edge for third parties enables rapid
deployment of innovative applications. In this paper, capabilities
for open access to charging function at the mobile edge are
studied. New API for online charging is developed which enable
MEC system to collaboratively interact with network functions
responsible for session management and real time charging. The
proposed interfaces follow the adopted Representational State
Transfer (REST) used to expose and to access edge cloud
services. The API is described by typical use cases, data model
and information exchange, and resource structure.
Implementation aspects related to modeling the charging
application logic and charging status supported by the network
are discussed. The latency injected by the proposed API is
evaluated theoritically.

I. INTRODUCTION

The fifth generation (5G) networks are designed to address
the requirements of large diversity of use cases. The
expectations from 5G are to provide enhanced broadband
service, ultralow latency, and to support connectivity of huge
number of devices in dense environment, which in turn
requires revolutionization of charging systems too. To achieve
these expectations, 5G design is fundamentally different from
its predecessors embedding key technologies such as
virtualization, network slicing, and microservices.
Virtualization provides cloud environment for both network
components and charging systems enabling auto-scaling and
fault tolerance. Network slicing allows creation of virtual
networks which share the same physical infrastructure and
thus supports different use cases opening the door for new
charging schemes. Microservices provide self-healing and low
latency for network components distributed at the network
edge which imposes charging systems to adapt to the same
operating modes. In 5G, online charging system and offline
charging systems are converged, and the charging interface is
a service based on HTTP/JSON [1]. 5G system enables pricing
based on peak data rates, rate of user/device mobility, mobile
data volume, service deployment time, end-to-end latency,
number of connected devices, energy efficiency, etc. [2].

The exponential increase in Internet of Things (IoT) traffic
will result in increased number of charging transactions and a
massive variety of transactions which requires their offloading
and distributed processing. Distribution of charging
functionality at the network edge provides scalability,
deployment flexibility and evolution. In this paper, the cloud
capabilities of the network edge are studied to provide
charging services, using Multi-access Edge Computing (MEC)
technology.

MEC provides cloud computing and storage capabilities in
the vicinity of user’s point of attachment to the network [3].
5G support for MEC includes a significant number of enablers
such as network capability exposure, local routing and traffic
steering, session and service continuity, quality of service and
charging etc. The exposure of policy and charging
functionality enables MEC related user traffic to receive the
required quality of service treatment and to be charged
appropriately [4].

Current research is focused on a new MEC-based service
which enables applications to apply flexible online flat-free
and volume-based charging schemes. The service provides
open access for third party applications to charging functions.

Next sections describe the related works, present the
overall service functionality by typical use cases, and specify
the service by data model and interface definition. Service
state models highlight some implementation issues. The
injected latency by the service is evaluated theoretically as a
key performance indicator.

II. RELATED WORKS

Traditionally, mobile networks adopted different
architectures for offline and online charging models, where
users chose the payment mode. 5G networks bring more
flexibility by combining online and offline systems. 5G
supports convergent architecture for both offline and online
charging mode, and the choice of online or offline mode
depends on the service needs [5], [6]. The 5G charging
architecture defines services, operations and procedures of
charging using service-based interface specified in [7], [8].
Flexible charging architecture that supports network slicing is
presented in [9].

The distributed deployment of core network functions in
different edge locations addresses some of the performance
issues associated with the centralized control. Due to vicinity
to the edge, distributed core architecture reduces latency, saves
backhaul resources, improves scalability and supports flexible
creation of innovative IoT services. Core network functions
can be virtualized and run as virtual machines. In case of
distributed core, MEC applications can share the same
virtualized infrastructure. The access for MEC applications
and services to distributed core functions is provided by
Network Exposure Function (NEF) [10]. Regarding charging
functionality, NEF provides Nnef_ChargeableParty service
which enables management of the chargeable party [11].

MEC adoption sets new business opportunities and
challenges for innovative smart charging strategies [12].
Examples include charging mechanisms for virtual resource
usage, third party pricing, revenue models for sharing the

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

physical infrastructure etc. In [13], [14], charging and billing
models for MEC applications are described. Different MEC
deployment scenarios require specific billing schemes which
are presented in [15], [16], [17]. Pricing scheme for MEC-
based mobility management enabling flexible charging is
proposed in [18]. In [19], the authors describe an architecture
enabling MEC billing and charge tracking.

Billing function as a service which is a key feature of MEC
is discussed in [20]. There exist also product solutions for
billing of IoT services deployed the network edge [21]. MEC-
based approach to open access to sponsored data connectivity
is presented in [22].

The main contribution of the current research is the
extension of capabilities provided to third party applications to
manage the chargeable party at the network edge. A MEC-
based approach to open access to charging functions is
proposed which supports amount and volume reservation,
reservation charging and reservation release. Using the
proposed API, it is possible to account for each service and to
provide accurate billing for multimedia sessions and
messaging, as well as to determine the customer’s usage.
Deployed at the edge, the API features latency reduction
required for real-time interactive media. Using the API,
analytic applications may allow to deploy more intelligent and
flexible charging and billing.

III. CHARGING AS A SERVICE

5G system supports traditional charging models based on
session and based on event. Event based charging model is
related to user transactions such as message sending,
publishing presence information, subscription to presence
information, downloading a resource etc., and the service
value is preliminary known. Session based charging model is
applied when the service value depends on the used volume of
network resources (measured in time units or number of sent
or received bytes). 5G system supports also new charging
models such as flow-based charging and quality of service
(QoS) based charging as a part of Policy and Charging Control
functionality.

In this paper, a new mobile edge service called Edge-
Based Charging (EBC) service is defined. The service enables
mobile edge applications to reserve a currency amount from a
user account, to add/reduce an amount from existing
reservation, to charge a reservation, to release a unused
reservation, request conversion of given volume to currency
amount, to reserve an amount from user account specified in
volume, to reserve additional volume, to charge the reserved
volume, to refund the user account by left in the reservation.
The proposed service may be beneficial for IoT applications,
online gaming, multi-view live streaming of sport events or
musical performance, augmented and virtual reality.

An example of an application scenario using the proposed
API is a live streaming of World League football match, which
is illustrated in Fig.1. A user who wants to watch the football
match establishes a secured connection with the service
provider supplying his mobile number and other information.
Before service provisioning, the user wants to know the cost of
the streaming service and the provider’s charging application
using the EBC interfaces (getAmount) interacts with the rating

engine of the mobile operator. The returned charging
information may depend on the user location, time of day, user
subscription etc., and it is displayed at the user terminal.

Fig.1 Message flow of advice of charging, volume reservation, charging,
additional reservation, and refund of unused reservation

The user activates the streaming service and the service
provider’s application reserves network resources for the
match duration (reserveVolume) to ensure the service
accountability. Then the application subscribes with the EBC
service to receive notifications related to charging events
(subscribeChargingEvents), initiates a session between the
user equipment (UE) and the streaming server (create-
ASsession),, and subscribes for session related notifications
(subscribeSessionEvents). The streaming service starts, and
the provider’s charging application being notified about
charging event (notifyChargingEvent) charges periodically
against the reservation (chargeReservation). It happens that the

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

-- 187 --

match must last longer than the allotted time because both
teams have an equal score and there is overtime. So, the
provider’s charging application reserves additional amount
(reserveAdditionalVolume) and the user continues watching
the match. The match ends with a goal scored by one of the
players and the charging application is notified, and then
releases the unused amount in the reservation
(releaseReservation).

The access of the EBC service to the charging functionality
in the operator’s network is through the NEF
Nnef_ChargeableParty service. The Nnef_ChargeableParty
service requests to become a chargeable party for a user
session. To initiate a session between the user and Application
Service (AS) which provides the service and to provide a
specific quality of service (QoS) for the AS session, the EBC
service uses the NEF Nnef_AFsessionWithQoS service [11].

IV. SERVICE RESOURCES AND SUPPORTED METHODS

Following RESTful principles for service design, all
concepts related to charging are represented as resources
located by Uniform Resource Identifiers (URIs).

Fig.2 shows the EBC service resource URIs where the root
service URI can be discovered using service discovery
register.

The chargingSubscriptions resource and sessionSubs-
criptions resource represent all subscriptions respectively for
charging and session related events. A new {charging-
SubscriptionID} resource and a new {sessionSubscriptionID}
resource, which represent existing subscription for charging or
session events, are created, when the application sends an
HTTP POST request to the parent resource. The
chargingSubscriptionData data type defines charging event
filters, user ID, charging ID, and the address where the
application wants to receive notifications. The session-
SubscriptionData data type defines session event filters, user
ID, session ID, and the application callback address. The
reserveAmounts resource represents all requests for amount
reservations. A new {reserveAmountID} resource represent-
ting an existing amount reservation request is created when the
applications sends an HTTP POST request to the
reserveAmounts resource with message body containing user
account ID and the information on the charge to be reserved.
The 201 Created message contains reservation ID. The
chargeReservations resource represents all requests for
charging against the reservations and the {charge-
ReservationID} resource represents an existing request for
charging a reservation. When the application creates a new
{chargeReservationID} resource, it uses the reservation ID
and information on the reservation to be charged. The
reserveAdditionalAmounts resource represents all requests for
reservation extension and the {reserveAdditionalAmountID}
resource represents an existing request for reservation
extension. The application uses an HTTP POST request to
create a new {reserveAdditionalAmountID} resource
providing the reservation ID and information on the charge to
be added to the reservation. The releaseReser-vations and
{releaseReservationID} resources represent respectively all
and an existing request(s) for release of the left reservation.
The getAmounts resource serves as all requests for converting
given volumes, and the {getAmountID} resource serves as an
existing request for converting given volume. An HTTP POST

request to the getAmounts resource creates a new request for
converting volume and the request body contains
ConvertAmountInfo data structure defining the user account to
be charged, the volume to be converted and parameters to be
used for rating (e.g. “service”, “unit”, “contact”, “operation”).

Fig.2 EBC service resources

The reserveVolumes resource, reserveAdditionalVolumes
resource, chargeVolumeReservations resource and
releaseVolumeReservations resource are related to manage-
ment of reservations charging by volume and represent all
requests respectively for reservations amounts of user
accounts, for adding volumes to existing reservations, for
charging reservations and for returning of funds left in
reservations. Applying an HTTP POST request to the
respective resource creates a new child resource. The
reserveVolumeData data type defines information required to

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

-- 188 --

create a new reserveVolumeID resource and contains the user
account, which is subject to reservation, the volume of
reservation, the description information to appear on the bill
and parameters to perform rating. The reserveAddVolumeData
type defines information required to add a volume to an
existing reservation and contains reservations identifier, the
volume to be added to the reservations and billing text. The
chargeReservationData data type is used to charge a
reservation and contains reservation identifier, the volume to
be charged, billing text and reference code which uniquely
identifies the request in case of disputes. The release-
ReservationData data type points the reservations identifier
and it is used to return funds left in a reservation.

All resources support also HTTP GET method which
retrieves information about the respective resource. The leave
resources support HTTP PUT method which updates an
existing resource and HTTP DELETE method which deletes
an existing resource.

V. CHARGING MODELS

Modeling the state of a charging transaction is a part of
EBC service implementation.

Fig.3 Charging state model, supported by a mobile edge charging application

Fig.3 shows the simplified model representing the state of
charging from the application point of view. On service
trigger, the application makes initial reservation and
subscribes to receive charging related notifications. In case of
successful reservation, the application starts a session and
subscribes for notifications about session related events. When
the reservation is consumed, the application requests charging
the reservation and makes additional reservation. The
application is notified about session stop, it requests charging
for the consumed resources and releases the left in the
reservation.

Fig.4 shows a simplified charging state model supported
by the MEC platform. To make reservation in the network, the
EBC service invokes Nnef_ChargeableParty_Create operation
of NEF. Notifications about charging related events are
provided to the EBC service by Nnef_ChargeableParty_Notify
operation. To charge the reservation and to make additional
reservation the EBC service invokes
Nnef_ChargeableParty_Update operation. Following the
application instructions, the EBC service invokes
Nnef_AFsessionWithQoS_Create operation to create an
Application Server session and to provide specific QoS. The
EBC service is notified about session related events by
Nnef_AFsessionWithQoS_Notify operation.

Fig.4 Charging state model, supported by a mobile edge platform

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

-- 189 --

Model verification is done by formal model definition
using the concept of finite state automata (FSA) and the
concept of weak bi-simulation [23]. An FSA is defined as a
quadruple of a set of states, a set of labels, a state of labeled
transitions, and a set of initial states. The concept of bi-
simulation is used in parallel programming to formalize the
idea of behavioral equivalence of processes. In the following
formal definitions, short names are given in brackets.

By FApp = (SApp, АctApp, →App, s0
App) it is denoted the FSA

representing the charging state model supported by a mobile
edge application, where:

- SApp = {Null [sA
1], WaitInitialReservation [sA

2],
WaitSubscription [sA

3], WaitSessionStart [sA
4],

WaitSessionStop [sA
5], WaitIntermediateCharging [sA

6],
WaitAdditionalReservation [sA

7], WaitFinalCharging [sA
8],

WaitReleaseReservation [sA
9], WaitUnsubscrbe [sA

10]};

- ActApp = {serviceTrigger [tA
1], reserveRes [tA

2],
subscribeChargingRes [tA

3], notifyChargingReq(initial)
[tA

4], createSessionRes [tA
5], subscribeSessionRes [tA

6],
notifySessionReq(start) [tA

7],
notifyChargingReq(intermediate) [tA

8], chargingRes[tA
9],

reserveAdditionalRes [tA
10], notifySessionReq(stop)

[tA
11], releaseReservationRes [tA

12],
unsubscribeChargingRes [tA

13], unsubscribeSessionRes
[tA

14]};

- →App = {(sA
1 t

A
1 s

A
2), (s

A
2 t

A
2 s

A
3), (s

A
3 t

A
3 s

A
4), (s

A
4 t

A
4

sA
4), (s

A
4 t

A
5 s

A
5), (s

A
5 t

A
6 s

A
5), (s

A
5 t

A
7 s

A
5), (s

A
5 t

A
8 s

A
6),

(sA
6 t

A
9 s

A
7), (s

A
7 t

A
10 s

A
5), (s

A
5 t

A
11 s

A
8), (s

A
8 t

A
9 s

A
9), (s

A
9

tA
12 s

A
10), (s

A
10 t

A
13 s

A
1), (s

A
10 t

A
14 s

A
1), (s

A
1 t

A
13 s

A
1), (s

A
1

tA
14 s

A
1)};

- s0
App = {sA

1}.

By FMec it is denoted the charging state model supported by
the MEC platform ТMec = (SMec, АctMec, →Mec, s0

Mec) where:

- SMec = {Idle [sM
1], InitialReservation [sM

2], SessionPending
[sM

3], OngoingSession [sM
4], SessionCharging [sM

5],
AdditionalReservation [sM

6], AdditionalReservation
[sM

6], ReleaseReservation [sM
7]};

- ActMec = { reserveReq [tM
1],

Nnef_ChargeableParty_CreateRes [tM
2],

subscribeChargingReq [tM
3], notifyChargingReq [tM

4],
createSessionReq [tM

5],
Nnef_AFsessionWithQoS_Create_Res [tM

6],
subscribeSessionReq [tM

7], notifySessionRes [tM
8],

Nnef_ChargeableParty_NotifyReq (intermediate) [tM
9],

Nnef_AFsessionWithQoS_Notify_Req(stop) [tM
10],

chargingReq [tM
11], Nnef_ChargeableParty_UpdateRes

[tM
12], reserveAdditionalReq [tM

13],
releaseReservationReq [tM

14], unsubscribeChargingReq
[tM

15], unsubscribeSessionReq [tM16]};

- →Mec = { (sM
1 t

M
1 s

M
2), (s

M
2 t

M
2 s

M
3), (s

M
3 t

M
3 s

M
3), (s

M
3 t

M
4

sM
3), (s

M
3 t

M
5 s

M
3), (s

M
3 t

M
6 s

M
4), (s

M
4 t

M
7 s

M
4), (s

M
4 t

M
8

sM
4), (s

M
4 t

M
9 s

M
4), (s

M
4 t

M
9 s

M
4), (s

M
4 t

M
4 s

M
4), (s

M
4 t

M
10

sM
4), (s

M
4 t

M
11 s

M
5), (s

M
5 t

M
12 s

M
5), (s

M
5 t

M
13 s

M
6), (s

M
6 t

M
12

sM
4), (s

M
5 t

M
14 s

M
7), (s

M
7 t

M
12 s

M
1), (s

M
1 t

M
15 s

M
1), (s

M
1 t

M
16

sM
1)}

- s0
Mec= {sM

1}.

Strong bi-simulation requires strict matching of transitions
in both FSAs. In weak bi-simulation, invisible (internal)
transitions may be disregarded.

Proposition: FApp and FMec are weakly bi-similar i.e. they
expose equivalent behavior.

Proof: Let R ⊆ (S App x SMec) where R = {(s1
A, s1

M), (s2
A,

s2
M), (s5

A, s4
M), (s6

A, s6
M), (s7

A, s6
M), (s9

A, s7
M)}. The states in R

reflect no charging and no session, initial reservation for the
session, ongoing session, charging the session, additional
reservation for the session, and release reservation for the
ended session. Then the following matching between
transitions of FApp and FMec can be identified:

1. On service trigger, the application makes initial
reservation, subscribes for charging events, receives a
notification about initial charging status, and creates a
session between the user and application server: for {(sA

1
tA

1 s
A

2) ⊓ (sA
2 t

A
2 s

A
3) ⊓ (sA

3 t
A

3 s
A

4) ⊓ (sA
4 tA

4 s
A

4) ⊓
(sA

4 t
A

5 sA
5})}  (sM

1 t
M

1 s
M

2) ⊓ (sM
2 t

M
2 s

M
3) ⊓ (sM

3 t
M

3
sM

3) ⊓ (sM
3 t

M
4 s

M
3) ⊓ (sM

3 t
M

5 sM
3) ⊓ (sM

3 t
M

6 s
M

4)}.
2. The application subscribes for session events and receives

notifications: for {(sA
5 t

A
6 s

A
5) ⊓ (sA

5 tA
7 s

A
5)} {(sM

4 t
M

7
sM

4) ⊓ (sM
4 t

M
8 s

M
4)}.

3. During the session, the granted resource are consumed,
the application is notified, and it requests intermediate
charging: for (sA

5 t
A

8 s
A

6)  {(sM
4 t

M
9 s

M
4) ⊓ (sM

4 t
M

4 sM
4)

⊓ (sM
4 t

M
11 s

M
5) ⊓ (sM

5 t
M

12 s
M

5)}.
4. The application requests additional reservation: for {(sA

6
tA

9 sA
7) ⊓ (sA

7 tA
10 sA

5)}  {(sM
5 tM

13 sM
6) ⊓ (sM

6 tM
12

sM
4)}.

5. The session ends in the network, the application is
notified, requests final charging and refund of unused
reservation: for {(sA

5 t
A

11 s
A

8) ⊓ (sA
8 t

A
9 s

A
9)}  {(sM

4 tM
10

sM
4) ⊓ (sM

4 t
M

11 s
M

5) ⊓ (sM
5 t

M
14 sM

7)}.
6. The application terminates its subscription for charging

events and session events: for {(sA
9 t

A
12 s

A
10) ⊓ (sA

10 t
A

13
sA

1) ⊓ (sA
10 tA

14 s
A

1) ⊓ (sA
1 t

A
13 sA

1) ⊓ (sA
1 t

A
14 s

A
1)} 

(sM
7 tM

12 sM
1) ⊓{(sM

1 t
M

15 s
M

1) ⊔ (sM
1 t

M
16 sM

1)}.

Therefore, FApp and FMec are weakly bi-similar. ■

The concept of bi-similarity is useful at the phase of
software verification to test the process parallel execution and
at the phase of system validation to prove compliance of
software specification with its implementation.

VI. API PERFORMANCE EVALUATION

It is widely recognized that the main MEC Key
Performance Indicators (KPI) for service providers and mobile
operators are delay improvement thanks to the proximity of
users, network performance and cost saving due to more
efficient usage of transport and backhaul network, energy
efficiency due to usage of small servers, and more efficient
management of computation and networking resources due to
network function virtualization [24].

In [25], MEC performance metrics are described, which
demonstrates the technology benefits. MEC metrics are as
functional and non-functional ones. Functional MEC metrics
impact on user perception and include latency, energy
efficiency, throughput, loss rate, jitter etc. Non-functional MEC

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

-- 190 --

metrics depend on deployment and management scenarios and
consider service lifecycle, service fault tolerance and
availability, processing load etc.

In this Section, the focus is on latency injected by the
proposed API. It is evaluated theoretically so called Service
Delivery Time (SDT). With the proposed EBC service, the
charging application is triggered on notification about
chargeable event occurred in the network and it sends
instructions for charging. So, the latency injected by the EBC
service is the time which is taken to a network request (e.g.
notification about session start) to reach the application, being
processed and transferred back to the network (e.g. charging
instructions sent by the application). SDT is a sum of Service
Processing Time (SPT) and Round-Trip Time (RTT).

SPT is a non-functional metric representing the time to
process the request and it depends on computational load. RTT
is a functional metric and it is the time taken for a request,
generated from the network to go to the charging application be
replied and travel back.

Fig.5 shows the sequence diagram illustrating the message
exchange used to evaluate the EBC latency. Upon occurrence
of chargeable event, the network notifies the EBC service and
it is the beginning of SDT period.

Fig.5 Typical message exchange in the context of EBC service

 The EBC service sends a POST request to the

application’s callback address to notify the application about
the chargeable event. The time budget required for notification
is a sum of the time required by the EBC service to create the
notification request (Tnotify

n), the time for norification request
transfer, and the time for notification request processing by the
application (Tnotify

a), plus the time required by the application to
create the notification response (T204

a), the time for notification
response transfer, and the time for notification response
processing by the EBC service (T204

a). The time budget
required for sending charging instructions is a sum of the time
required by the application to create the charging request
(Tcharge

a), the time for charging request transfer, and the time for
charging request processing by the EBC service (Tcharge

n), plus
the time required by the EBC service to create the charging
response (T200

n), the time for charging response transfer, and
the time for charging response processing by the application
(T200

a). As the mobile edge application and the EBC service run
on the same virtualized platform, the message transfer time is
negligible. So, the SDT may be theoretically evaluated as:

SDT=Tnotify
n+Tnotify

a+T204
a+T204

n+Tcharge
a+

 +Tcharge
n+T200

n+T200
a. (1)

An example of a POST request for notification about
chargeable event, where the JSON body of the request

contains information about the time stamp, session ID, user
ID, and event type, looks like the following:

POST /app/sessions/notifications/70107427‐c772‐4122‐a1a8‐
e69abe63ca10 HTTP/1.1
host: [::1]:8080
user‐agent: Vert.x‐WebClient/3.9.1
content‐type:application/json
accept:application/json
content‐length: 149

{"timeStamp":"2020‐07‐10T13:50:11.930Z","session":"c17d668e‐
2eca‐4387‐9c82‐5886a764a836","eventType":"sessionStart",
"userID":"ac361f9c@example.com"}

The respective response of the POST request for
notification about chargeable event looks like the following:

HTTP/1.1 204 No Content
Location: 70107427‐c772‐4122‐a1a8‐e69abe63ca10

An example of a POST request with charging instructions,
where the JSON body of the request contains information
about the session ID, the user account ID, a reference code (in
case of disputes), the volume, and the units, and the respective
response look like the following:

POST /ebc/v1/reserveAmounts HTTP/1.1
user‐agent: Vert.x‐WebClient/3.9.1
content‐type: application/json
accept: application/json
content‐length: 189
host: ::1:8088

{"session":"70107427‐c772‐4122‐a1a8‐
e69abe63ca10","userAccountID":"7ca87145‐c349‐480f‐ab7c‐
e0adf0f2c7ef","units":"minute","volume":20,"referenceCode":"54fd
e971‐30a7‐4d91‐8152‐7566623c02ec"}

HTTP/1.1 201 Created
location: http://::1:8088/ebc/v1/reserveAmounts/e5bb38b0‐9adc‐
4b9c‐a659‐0daef7b443d9
content‐type: application/json
content‐length: 246

{"session":"70107427‐c772‐4122‐a1a8‐
e69abe63ca10","userAccountID":"7ca87145‐c349‐480f‐ab7c‐
e0adf0f2c7ef","units":"minute","volume":20,"referenceCode":"54fd
e971‐30a7‐4d91‐8152‐
7566623c02ec","reserveAmountID":"e5bb38b0‐9adc‐4b9c‐a659‐
0daef7b443d9"}

We use this typical message exchange in the context of

the proposed EBC service to evaluate theoretically the injected
latency. The message creation/processing time is a product of
input message size in bits (L), the complexity of the message
as necessary CPU cycles per bit (X) over the MEC host’s CPU
frequency (f). Let, the MEC host’s CPU clock speed is of 3.2
GHz and the complexity is 1000 cycles per bit [26]. As the
charging application and EBC service are executed on the
same MEC host, the time budget required to create a message
and the time budget required to process the same message may
be regarded as equals. So,

 SDT= 2Tnotify+2 T204+2Tcharge+2T200. (2)

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

-- 191 --

 Tnotify=LNotify.X/f = 0.87 ms (3)

 T204=L204.X/f = 0.003 ms (4)

 Tcharge=Lcharge.X/f = 0.87 ms (5)

 T201=L201.X/f = 1 ms (6)

So, the injected latency for sending a notification about a
chargeable event to a mobile edge application and receiving
charging instruction by the network is theoretically evaluated
as SDT= 5.5 ms.

VII. CONCLUSION

The variety of use cases supported by 5G system requires
development of flexible charging systems too. The open access
to charging functionality creates new opportunities to
application and content providers which can play profitable and
complementary roles. The edge computing which ensures more
efficient network operation, better service delivery and
personal user experience may contribute to better
monetarization of mobile broadband experience. Delegating the
charging functionality to mobile edge applications enables
increase of the edge responsiveness and thus proactive user
experience maintenance.

The paper presents an approach to open access to charging
functions at the edge of the mobile network. Using the
proposed mobile edge interfaces, charging applications may
reserve amounts or volumes, may charge reservation, may
extend reservation, and may refund unused reservations. Future
work will be aimed at extending the proposed functionality
with capabilities of direct charging by volume and amount as
well as to emulate the proposed functionality.

REFERENCES
[1] 3GPP TS 32.240, Telecommunication management; Charging

management, Charging architecture and principles, Release 16, 2020.

[2] F. L. Rodriges, U. S. Dias, D. R. Campelo, R. O. Albuquerque, A. J.
Lim, L. J. G. Villalba. "QoS management and Flexible Traffic Detection
Architecture for 5G Mobile Networks," Sensors (Basel) 2019 vol. 19,
issue 6,.doi: 10.3390/s19061335

[3] ETSI GS MEC 002 Multi-access Edge Computing (MEC); Phase 2: use
cases and Requirements, v2.1.1, 2018.

[4] Atanasov, I., E. Pencheva, A. Nametkov, V. Trifonov. "On Functionality
of Policy Control at the Network Edge," International Journal on
Information Technologies and Security, No. 3 (vol.11), 2019, pp. 3-24.

[5] S. Velrajan. "5G pricing – How would Service Providers monetize 5G
investments?," 2019, Available at: https://www.thetech.in/2019/04/5g-
pricing-how-would-service-providers.html

[6] R. Tornkvist, C. Shan. "Charging and Billing Architecture for 5G
networks, Journal of ICT Standardization, vol.7, issue 2, 2019, pp185-
194.

[7] 3GPP TS 32.290 Telecommunication management; Charging
management, 5G system;Services, operations and procedures of
charging using Service Based Interface (SBI), Release 16, 2020.

[8] L. Bonati, M. Polese, S. D’Oro, S. Basagni, T. Melodia. "Open,

Programmable, and Virtualized 5G networks: State-of-the-Art abd the
Road Ahead, ", Computer Science, arXiv:2005.10027v2 [cs.NI] 21 May
2020, pp. 1-66.

[9] A. Barakabitze, A. Ahmad, R. Mijumbi, A. Hines. "5G network slicing
using SDN and NFV: A survey of taxonomy, architectures and future
challenges," Computer Networks, vol.167, 2020, pp.1-40.

[10] 3GPP TS 23.502 Procedures for 5G System, Stage 2, Release 16, 2020.

[11] 3GPP TS 29.522 5G System; Network Exposure Function Northbound
APIs; Stage 3, Release 15, v15.2.0, 2018.

[12] J. Zhang, Z. Wu, W. Xie and F. Yang, "MEC Architectures in 4G and
5G Mobile Networks," 10th International Conference on Wireless
Communications and Signal Processing (WCSP), Hangzhou, 2018, pp.
1-5, doi: 10.1109/WCSP.2018.8555652.

[13] Q. V. Pham et al, "A Survey of Multi-Access Edge Computing in 5G
and beyond: Fundamentals, Technology Integration, and State-of-the-
Art," IEEE Communications Surveys and Tutorials, 2020,
arXiv:1906.08452, pp.1-43.

[14] Y. Li, K.H. Kim, C. Vlachou, J. Xie, "Bridging the Data Charging Gap
in the Cellular Edge, " Conference of the ACM Special Interest Group on
Data Communication (SIGCOMM ’19), ACM, New York, NY, USA,
2019, pp.1-14,, doi:10. 1145/3341302.3342074

[15] Z. Wang and Y. Cai, "Management Optimization of Mobile Edge
Computing (MEC) in 5G Networks," IEEE International Conference on
Communications Workshops (ICC Workshops), Shanghai, China, 2019,
pp. 1-6, doi: 10.1109/ICCW.2019.8756650.

[16] D. Sabella, A. Reznik, R. Frazao, "Multi-Access Edge Computing in
Action, " CRC Press, 2019.

[17] "China Unicom Edge Computing Technology, " Chine Unicom,
Whitepaper, 2017.

[18] D. Sabella, N. Smith, N. Oliver, K. A. Doshi, S. Prabhakaran, M.
Filippou, F. Guim Bernat, "Multi-access Edge Computing (MEC)
Billing and Charging Tracking Enhancements, " United States Patent
Application 20190158300, 2018, Available at: http://www.freepatent
sonline. com/y2019/0158300.html.

[19] J. Lee, D. Kim, J. Lee, "ZONE-Based Multi-Access Edge Computing
Scheme for User Device Mobility management," Applied Sciences,
vol.9, issue 11, 2019, pp.1-16, doi:10.3390/app9112308.

[20] P. Varga, et al. "5G Support for Industrial IoT Applications –
Challenges, Solutions, and Research Gaps," Sensors 2020, 20, 828;
doi:10.3390/s20030828, pp.1-43.

[21] R. Zhang, "A Convergent Billing System for the 5G Era, " pp.22-24,
Intelligence Empowers Your Business Success, Huawei, Mobile World
live, issue 2, February 2020.

[22] I. Atanasov, E. Pencheva, I. Asenov, V. Trifonov, "Sponsored Data
Connectivity at the Network Edge, " 4th International Conference on
Advanced Computing and Data Sciences, La Valetta, Malta, 2020, pp.1-
9.

[23] A. Halchin, Y. Ait-Ameur, N. K. Singh, A. Feliachi and J. Ordioni,
"Certified Embedding of B Models in an Integrated Verification
Framework," International Symposium on Theoretical Aspects of
Software Engineering (TASE), Guilin, China, 2019, pp. 168-175.

[24] I. Hussain, Q. Duan, T. Zhong. "Service performance tests on the on the
Mobile Edge Computing Platform: Challenges and Opprtunities, " in
Edited book "Smart Service Systems, Operations, Management, and
Analytics, " Springer, 2019, pp.1-7.

[25] ETSI GS MEC-IEG 006; "Mobile Edge Computing; Market
Acceleration; MEC Metrics Best Practice and Guidelines, " v1.1.1, 2017

[26] K. Cheng, Y. Teng, W. Sun, A. Liu and X. Wang, "Energy-Efficient
Joint Offloading and Wireless Resource Allocation Strategy in Multi-
MEC Server Systems," in Proc. of IEEE International Conference on
Communications (ICC), Kansas City, MO, 2018, pp. 1-6.

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

-- 192 --

