
Human-Machine Collective Intelligence Environment

for Decision Support: Conceptual and Technological

Design

Alexander Smirnov, Andrew Ponomarev
St.Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences

St.Petersburg, Russian Federation
{smir, ponomarev}@iias.spb.su

Abstract—The paper describes a conceptual and technological
design of a novel class of environments, providing means for
leveraging collective intelligence of ad hoc human-machine teams
for decision support. The paper describes theoretical background
used for creating human-machine collective intelligence
environment, principles guiding the design and foundational
technologies. The core of the proposed environment is an
ontology-based representation of the decision-relevant
information that can be processed by both human and machine
participants. The proposed environment can be used for decision-
making support in a variety of domains characterized by high
levels of uncertainty and dynamics (emergency, natural disaster,
government and business scenarios).

I. INTRODUCTION

The complexity of many real-life problems (especially, in
managing complex systems) is significantly higher than the
complexity that is addressable by purely automatic tools and
systems. That is why human is still an important part of many
complex information processing workflows. However, the
availability and the speed of information processing of humans
are low compared to software and hardware. With the
development of global communication networks it has resulted
in the creation of crowdsourcing and crowd computing
platforms, consolidating human resources and providing them
on the on-demand basis. There are two major trends in the
evolution of globally accessible dynamic collaboration. First,
crowdsourcing is mostly about solving simple problems (but in
large quantities); adapting crowdsourcing for complex work is
an active research issue [1]–[3]. Second, there is a growing
understanding that novel forms of human-machine
collaboration are possible, resulting in new types of human-
machine collective intelligence [4], [5].

One of the types of intelligent activities that normally
requires human intelligence is decision-making. While in many
areas where the situation can be described by a relatively small
number of parameters and there is quite accurate model of the
system dynamics operative decision-making can be done
automatically (essentially it is the domain of automatic control
– various brake anti-lock systems, autopilots etc.). However, in
a much wider range of problems, the list of parameters

describing the situation is huge, many of them are
unobservable, there is no formal model connecting these
parameters, and often no predefined list of alternatives
(possible controls). Besides, there may be some accountability
issues, and there is no agreed upon framework for resolving
accountability issues for decisions taken by automatic systems.
In such settings, decision-making requires human experience,
ability to generalize and infer information from tacit signs. In
other words, decision-making remains human’s responsibility,
performed with an extensive (and increasing) help of software
tools.

On the other hand, current developments in the AI area
(especially, in natural language processing, formal reasoning
and multi-agent systems) provide a solid background for
collaborative human-machine systems where intelligent
endeavor is shared between heterogeneous entities acting
collaboratively and in a coordinated way.

An important aspect that distinguishes this paper is the ad
hoc nature of the created collectives. In some sense, it derives
from crowdsourcing systems, where a problem is given to an
undefined community. However, in most crowdsourcing
scenarios, first, there are no interactions between participants,
they don’t have to establish connections, second, there are no
seamless integration of software tools (other than problem
specific human input processors). There are some exceptions to
that, they are described in more detail in Section II.

The functioning of the ad hoc teams (not necessarily in the
Internet) is an interesting problem from the organization
research perspective [6], [7]. There are mechanisms and
practices inherent to such systems. Understanding these
mechanisms and practices is important to provide computer
support of collective intelligence in ad hoc teams. Therefore,
the paper briefly outlines some of the most important results
that influence the design of the environment.

The paper describes theoretical background used for
creating human-machine collective intelligence environment,
as well as some aspects of technical implementation. It is also
shows how different parts of such system interact during the
collective decision support.

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

The structure of the paper is following. Section II describes
some related research areas that influence the concept and
design of the human-machine collective intelligence
environment, as well as competing developments. Section III
outlines the outcomes of the general coordination theory
findings that solve as a foundation for the environment. Section
IV describes the core design of the human-machine collective
intelligence environment and its mechanisms.

II. RELATED WORK

This work is especially related to two lines of research. The
first line grows from organization research, as well as
sociological and psychological sciences, where the processes of
ad hoc teaming are studied and principles of ad hoc teams are
identified. The second line represents other attempts to create
environments for ad hoc teaming and human-computer
collaboration. In this section, we discuss the most relevant
results from the both lines of research.

A. Socio-psychological research of dynamic teams

Dynamic creation of (relatively) short-lived teams is typical
in some areas of human activity. We argue, that the findings of
socio-psychological research of mechanisms allowing efficient
composing and functioning of such teams can be useful for any
computer-based environment supporting such teams (although,
not all of them are directly applicable).

There are several important publications in this area. The
authors of [6] analyze the coordination processes of medical
trauma center where fast-response and error-free activities are
essential requirements. Teams there are collected from medical
specialists of various specializations (a surgeon, an
anesthesiologists, nurses) in a temporal basis (one shift) and
effective coordination between them is crucial for ensuring the
best possible treatment for incoming patients. The authors find
two categories of coordination mechanisms employed in such
organizations: expertise coordination practices (used most of
the time, on the habitual patient’s trajectory – reliance on
protocols, plug-and-play teaming, community of practice
structuring, knowledge sharing), and dialogic coordination
practices (used for a problematic patient’s trajectory –
epistemic contestation, joint sense-making, cross-boundary
intervention, protocol breaking) [6].

The paper [7] analyzes coordination mechanisms of a
filming crew. Again, filming crew is usually collected for
relatively short period of time from people most of whom
previously didn’t work together. However, each part of a
filming team has a specific role and has understanding of the
role’s responsibilities, as well as typical responsibilities of the
roles he/she tightly collaborates with. The authors describe the
mechanisms that members of a filming crew use on a day-by-
day basis to concretize the relatively general understanding of
responsibilities to particular actions, as well as to establish
connections between people playing ‘neighboring’ roles in a
crew.

Both papers notice role-based coordination mechanisms
with relatively flexible contents associated to the roles.

B. Computational environments and human-computer
collaboration

Computational environments leveraging the resources of
loosely connected people interacting via Internet usually are
discussed in the scope of crowdsourcing or crowd computing.
In today’s crowdsourcing work is rarely collaborative,
participants usually do their tasks independently and then their
results are processed with some computer algorithm (to
generalize or to check the quality). Besides, individual tasks are
usually rather simple (like describing a single picture,
recognizing something on an image etc.). However, in
crowdsourcing research there are continuous attempts being
taken to adapt crowdsourcing to more complex problems and
(these trend are related) to develop collaborative workflows [8].

It has also been shown, that for complex problems pre-
programmed workflows are too limited (e.g., [3]), therefore, the
potential of crowdsourcing for complex work is tightly
connected with the mechanisms of dynamic team formation,
workflow adaptation. The first experimental crowdsourcing
systems where human participants were able to change the
initially proposed workflow appeared in almost ten years ago
[9], but the problem is getting the closest attention of the
research community only recently. Particularly, in the works
[2], [3], [8] where the limitations of workflow-based solutions
are studied and the ways to overcome these limitations with a
help of dynamic organizations from members of the crowd (the
so-called “flash organizations” [2]) are proposed. Interestingly,
these works also acknowledge the results from socio-
psychological research and build upon it. While the concept of
“flash organization” represents an important step in
understanding how crowd computing can be applied to
complex problems, it deals only with human participants. In
this research, however, we are building an environment where
heterogeneous agents (human and software) would be able to
collectively decide on the details of the workflow.

Problems closely to the problem of collective decision-
making (including human-machine teams) are also present in
many publications in the area of computer-supported
collaborative work (e.g., [10], [11]). The results of the Dicode
project implemented within the framework of the European
FP7-ICT program [12], [13] deserve special attention. In the
framework of the project, in particular, an ontological
presentation of the argumentation process and a number of
visual tools for working with a thus formalized set of
interrelated arguments are proposed. The importance of these
results lies in the fact that for sharing information about the
problem by experts and software agents, it should have a
structured representation, one of the options of which is a graph
of the relationship of arguments. However, explicitly encoding
all the arguments may be too difficult.

The problem of intelligent human-machine ‘teamwork’ is
also posed in the context of modern production systems (the so-
called cyber physical production systems (CPPS)). E.g., paper
[14] proposes a management portfolio matrix for examining the
feasibility of optimal collaboration between humans and cyber-
physical resources. The optimal collaboration refers to the
exchange of knowledge, reciprocal learning, and interaction of
human and CPPS in smart factories. Further, paper [15]
approaches the collaboration of human and CPPS in problem-

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

-- 254 --

solving from the angle of complementarity whereby “human
competences” and “CPPS autonomy” together derive
supplementary capability and reciprocal learning. It proposes
an ontology for reasoning out the competence questions, i.e. in
which situation and under which conditions human and/or
CPPS is dominant or eligible to solve a problem. However,
these works are focused mostly on a closed environment of a
production system.

A high-level paper [4] summarizes what is required to
support human-machine collectives and current technological
limitations for building them. In particular, the authors
underline the need for the flexible autonomy of the agents,
agile team-building, incentivization and accountability. The
proposed environment account for all these prerequisites.

III. BACKGROUND FROM ORGANIZATION RESEARCH

This section discusses some important outcomes from the
organization research, coordination theory [16] and socio-
psychological research that influenced the design of the
proposed environment.

1) Research of social systems and current practices in
designing such systems agree that the elements of self-
organization are critical, especially when solving complex
problems. Despite the fact that there are a number of works
close to the proposed, there are currently no solutions
supporting the collective intelligence formed by artificial
intelligent software services and people.

2) One of the most important roles in the functioning of
dynamic self-organizing teams consisting of people is played
by social norms and the adaptation of the behavior policies of
team members to follow these standards. Accordingly, when
software services are included in the team, it should be ensured
that they can read and interpret social norms, as well as follow
them. Moreover, since software services can be created by
various users of the environment, it would be rational to
separate the layer of implementation of social norms from the
code of software services directly, making it part of the general
infrastructure of the environment.

3) Another important feature of self-organization in
dynamic human groups is role-based coordination [2], [3]. The
idea that role-based coordination is a nearly optimal
mechanism for ad hoc teams. Especially, allowing non-rigid
role responsibilities structure, becoming more concrete and
precise as collaboration moves on [2], [6], [7]. Interestingly,
that ad hoc teaming is the most effective, when there is some
well-understood by different people set of roles (even if these
roles are not strict).The concept of the role, therefore, should
also be provided by the environment, as well as the mechanism
of “switching” the software agent between the roles (if
possible) and clarifying the specific content of the role within
the framework of this team [17].

4) The manifestation of team self-organization can be
structured using patterns [18], structures and coordination
schemes that participants come to under certain conditions.

5) A formal representation of problem-related information
is necessary, allowing one to track the cause of certain
arguments or results (provenance) [4], [12], [13], which is

“understood” by both the participating people and the software
agents. Therefore, information exchange infrastructure should
not only allow all participants to get relevant information, but
also to support accountability and provenance.

6) The environment should provide some incentive
management mechanism allowing to reward participants [4]. It
is crucial due to the openness of the environment. For example,
in smart manufacturing systems it may not be as important,
because all the infrastructure is already integrated and
dedicated to the cooperation.

IV. COLLABORATIVE ENVIRONMENT DESIGN

The purpose of the environment is to leverage the
coordination procedures between heterogeneous agents,
allowing information exchange on two levels: information
concerning the problem being solved (available data, opinions,
arguments and models), and process information (role
distribution, responsibilities and so on).

The primary goal is to support cooperation of relatively
short-lived (hours to several days) ad hoc teams, that is why
much attention is paid to the process of forming a team (this
process is not only important because the set of participants
have very high impact on the efficiency of a cooperation, but
also because team formation is relatively large part of a whole
lifecycle of the team).

The distinguishing features from another systems for
organized complex work (like [2]) is maintaining the structured
representation of the problem and process information,
allowing software agents interpret current situation and
participate in the process of preparing the solution.

It should be noted, that the environment is inherently
dedicated to decision support problems. Therefore, the design
is influenced by decision-making methodologies (e.g., [19]–
[21]) and the workflow implemented by a team mostly
corresponds to a typical decision-making process.

We describe the environment design in two levels. First,
conceptual design, which shows what are important concepts of
the environment and how they interact during the work.
Second, technological design, showing how (by what
technologies and software components conceptual design is
implemented).

A. Conceptual design

There are following principal actors differentiated by the
environment design: end-user (decision-maker), participant,
and service provider. End-user (decision-maker) uses the
environment to get help in making a decision. He/she describes
the problem and posts so that the problem description is visible
to a specified community. Participant is an active entity (human
or a software service) working on a problem given by the end-
user. Finally, service provider develops, integrates to the
environment, and supports software services that can act as
participants working on some problem given by the end user.
Service provider is also responsible for the deployed services,
assuaging the problem of service accountability.

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

-- 255 --

The core entities involved in most of the processes taking
place in the environment are problem and team. Problem is
introduced by an end-user and then is addressed by a team of
participants. The description of a problem has a complex
structure and representation. First of all, it contains not only
information, specified by the end-user (initial statement), but
also includes all the information produced by the team. So,
during team’s activity, the problem becomes more and more
detailed. Second, to enable (at least, partly) effective
interpretation by software agents, problem description is
represented in a semi-structured way. In particular, machine
readability is achieved via using ontologies. It is a crucial point
in design. Since their introduction to the IT industry during
Semantic Web initiative, ontologies proved themselves both
quite efficient in solving interoperability problems and quite
non-friendly for non-expert users. Still, we argue that for mixed
human-machine teams, the ontologies provide a kind of lingua
franca, acceptable by both human and software participants of
the process. However, to make the use of ontologies easier for
people, the environment makes the use of ontologies as implicit
as possible by relying on three techniques:

- Implicit ontological representation of the structure of
problem information. It means, that a human
participant sees the problem description as a set of
constraints, alternatives, criteria, alternative
evaluations, arguments and so on, in other words, in
terms that are widely used in decision-making literature
and, in particular, by nearly every decision-making
methodology. However, “under the hood” this structure
is encoded with the decision-making ontology,
therefore, software agents are also able to analyze the
problem structure.

- Natural language processing. Using advances in this
area it is possible to infer the role of some information
pieces, its relationship with the goal and/or some line
of argumentation and so on.

- GUI-based nudging participants to encode problem
structure in an ontology-compatible way. Digital
nudging [22] is a technique of growing importance, due
to the fact that currently so many choices people do by
interacting with virtual environments. In particular,
nudging is quite effective alongside with the natural
language processing of problem information, as it
allows to ask user to disambiguate some terms and
relations in the problem information.

The environment defines two basic ontologies, representing
different aspects of the collaborative decision support:

- Decision-making ontology. This ontology defines main
concepts that are used during decision-making
(criterion, alternative, evaluation etc.) and interaction
between them. The ontology is based on the analysis of
existing decision-making methodologies and has been
built in such a way to support majority of them.

- Collaboration and coordination ontology. It defines the
concepts used in distributing work among team
members (role, responsibility, dependency etc.).

The use of these ontologies allow artificial agents to
‘understand’ the processes taking place in the team and
contribute to them. However, for the ontology-based decision-
support agents, there is also a possibility to define an
application ontology and map it to the decision-making
ontology. By this process, some parts of the problem situation
become connected to the general decision-making terminology.
For example, in the problem of building a tourist route (e.g., in
tourist support applications), an entity of a problem ontology
‘route’ becomes connected to the entity ‘alternative’, therefore,
automatically enabling all the software team members to treat
routes as alternatives (e.g., in visualizing them or building
Pareto optimal set [23]). Besides, it allows problem-specific
services to also contribute to the decision-making (e.g.,
estimate typical traffic of the route, its length).

The way problem information becomes richer and grows
via interaction of agents, to some extent resemblances to
stigmergy [24] and intelligent systems based on the principle of
blackboard interactions. Especially, with research on ontology-
based smart space technology [25]–[28]. The difference is that
the smart space technology mostly considers intelligent
collaborations of agents in some physical neighborhood (e.g.,
one room [25]). However, in the proposed environment, smart
space represents a virtual space dedicated to solving a
particular decision-making problem. At the same time, as the
progress of a team on the problem is reflected by structural
changes of ontological description of the problem, it allows to
leverage ontology-based publish-subscribe mechanisms to
intelligently perform some actions by software agents in
response to particular situations during problem-solving.

Another core entity, as it was already mentioned, is a team.
Team in the context of the environment is defined as a
heterogeneous group (consisting of human participants and
software services) working towards solution of a particular
problem. Each problem has a team dedicated to it. Obviously, a
participant may be a member of several teams, or not be a
member of any team.

Initial team formation is based on the same principles that
are used in most of the crowdsourcing platforms and
knowledge networks (e.g., [29]): each participant has a profile
describing key specializations, problem-solving history, as well
as the history of previous collaborations (with mutual
evaluations). There is a massive list of publications why each
of these components of the profile is necessary and how it
affects the efficiency of teaming. The initiative in this process
is mixed in the sense that a contributor should send a proposal
to the end-user, consisting of one or more team members
(proposal may include several participants that already have
some positive experience of working together), and end-user
has to collect the initial team. However, decisions of the both
parties – participants and end-users – are assisted by
environment. The participants may choose to receive
recommendations in case some problem touching his/her area
of competences is posted. On the other hand, end-users may
explore the description and history of all the participants
mentioned in the proposals.

Due to much uncertainty typically associated with decision-
making, it is often the case that during the work on the problem

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

-- 256 --

team understands that it lacks some competencies or resources.
Therefore, the team may create a new resource requirements,
that are registered in the environment and resolved in a manner,
similar to the initial team formation process (participants have
to actively apply for the positions in the team, however, both
sides are assisted by the environment mechanisms).

It should be noted, that it doesn’t fully apply to the software
participants (services). As the throughput of software services
is not as limited as the throughput of humans, and the execution
is relatively cheap, software services are passively connected to
any team and by the mechanisms of the environment
(ontology-based publish-subscribe) are watching the processes
taking place with the problem. There are two states a software
service can be in with respect to a team (Fig. 1): dormant and
active. Initially, all services are in the dormant state and are
waiting specific conditions during the problem-solving. If these
conditions defined by a particular service are met, the service
tries to activate, describing its purpose and terms of use. If the
team agrees that the service is useful for the problem, the
service is allowed to activate (change state to active) and
become a member of the team. Otherwise, the service remains
dormant. Active service may also be transferred to the dormant
state by a decision of the team. Besides, the services can be
accessed via a service catalog and activated manually by team
members.

Active services can be used by the members of a team. The
mechanics of their usage depends on the kind of a service.
There are following types of services:

- Problem-solving service;

- External tool and database access service.

Problem-solving service accesses the problem information
described in the form of ontology and natural text and can
actively add information pieces to it. An example of such
service is a statistics-based question answering service – if it
detects a question about some facts (e.g., “How many people
die from tuberculosis in the World in one year?”) and can
answer it in some form it adds an answer to the question.
Another example is a service that derives from the problem
information a current set of alternatives and their evaluations,
builds a Pareto optimal set and adds it to the problem
information.

External tool and database access services in activated form
only provide an access to a specified resource. For example, if

a team need epidemic database, it can activate the service that
grants access to this database and use it for queries.

Simultaneously two processes take place when team works
on a problem: solution preparation and decision support
(re)organization. Both of these processes are supported by
mechanisms provided by the environment. Solution preparation
is main productive process, during which problem is enriched
with new information and artifacts created by team members.
General scheme of the solution preparation process (Fig. 2) is
driven by decision support methodologies (e.g., Simon’s model
[19], DECIDE [20], or GOFER [21]). It should also be noted,
that these methodologies provide the general scheme of the
solution preparation, main stages that have to be performed,
while execution of each stage is done via activities relevant to
the problem at hand. For example if the environment is used by
an organization to decide which motivation policy to
implement for the workers, then the stage of Considering all
the alternatives may contain a task of identifying relevant
scientific publications about the effectiveness of motivation
policies. The necessary activities (contents of the respective
stage) are defined and enacted by the team itself, the
environment allows to track these activities and connect their
results with the problem definition and the concepts of
decision-making ontology.

Most of the modern decision making methodologies include
the evaluation phase (for example, this is the case with the
DECIDE methodology – it defines the same stages as depicted
in Fig. 2, but also Evaluate stage, responsible for the letter E in
the name), however, it turns out that when the decision making
support is ‘outsourced’ to an external collective, the collective
actually cannot evaluate and monitor the results of the decision.
Therefore, while this stage is perfectly valid for the decision
maker, it is not supported by the environment.

Physically, the process of solution preparation can be
viewed as adding information to the problem definition initially
provided by the end-user (in the smart space). First, by adding
explicit criteria and constraints (during the activities of initial
stages – Define the problem and Establish the criteria), then by
adding alternatives and their evaluations (later stages). The
result of this process is fully detailed description of a problem
situation, weighted alternatives and their estimated

The team
decides to
exclude the
service

- Activations
conditions are
met and the
team agrees to
activate
- Manual
activation from
the catalog

Dormant

Active
(Member of a

team)

Fig. 1. Service states with respect to a team

Define the problem

Establish the criteria

Consider all the alternatives

Identify the best alternative

Develop a plan of action

Fig. 2. Scheme of solution preparation process

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

-- 257 --

consequences – accepted by the end-user.

Decision support (re)organization process represents all the
activities aimed on planning and organization of team work
(e.g., deciding whether additional resources are required,
assigning team member responsibilities, setting task deadlines
and identifying new tasks to be solved in order to reach the
goals of the whole process). Complex activities cannot be fully
planned (and the literature review supports that), therefore, the
team can adapt the plan as the solution process advances.
General scheme of the decision support (re)organization
process is shown in Fig. 3. During the Plan activity the team (or
a responsible member of the team) builds a list of activities and
assigns responsibilities using the features of the environment. If
it is necessary, some plan items should be refined (this is
especially the case when there are software services assigned to
them). The planned activities are executed (this is actually a
solution preparation process, described earlier); the results are
observed and reflected on. If during the execution it turns out
that some additional activities have to be performed, then the
plan is adjusted and the cycle continues.

B. Technological design

Technologically the environment (Fig. 4) is implemented as
a web application where each problem (and, therefore, a team)

has its own workspace, supporting both informal text-based
communication (similar to popular collaboration environments
like Slack [30] or Mattermost [31]), but also have integrated
‘nudging’ modules allowing to tie the information into
decision-making ontology formalized view, making it
accessible for software services. Besides, humans can also
browse the problem information in this structured ontology-
based view and edit it if it is necessary.

The ‘nudging’ functionality is implemented as a set of
Discourse Support Components, that maintain both the
structured (ontology-based) and unstructured problem
description and constantly perform mapping between them.
Besides, these components provide an interface for other
components of the system to access the contents and
requirements of the team.

Team Member Recommender is responsible for performing
assistance on finding team members for problems. It issues
recommendations to participants who fit the active teams
according to the implemented fit estimation models.

Software services are integrated into the collective
intelligence environment in the following way. Service
provider registers the service by specifying activation context,
terms of usage and runnable image of a service (Software
Service Image Repository component). The description is
encoded via SPARQL-based declarative language to enable
ontology-based subscription mechanisms. In order to preserve
confidentiality of the team work, the services are run in an
isolated way. Until their presence is accepted by the team,
watching is done by the environment (on behalf of a service,
particularly, by Team Activity Monitoring component). After
the activation condition has been fired, a service instance is
created from the runnable image and run in a new isolated
container without internet access making sure that details of the
problem will not be accessible by service provider who is not
member of a team.

Web
Application

Discourse
Support

Components

Team Member
Recommender

Knowledge/Data
Database and Ontology Management

Team
Activity

Monitoring

Software
Service Image

Repository
Users

Software
Service

Participant

Isolated Runtime

Service Runner

Fig. 4. Technological design of the environment

Plan Refine

Execute

Observe

Reflect

Fig. 3. Scheme of decision support (re)organization process

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

-- 258 --

V. CONCLUSION

The paper describes a conceptual and technological design
of a novel class of environments, providing means for human-
machine collective intelligence for decision support. The
proposed environment is rooted in modern research in ad hoc
team coordination and ontology-based smart spaces
technology.

The core of the proposed environment is an ontology-based
representation of the decision-relevant information that can be
processed (and augmented) by both human and machine
participants. The ontology-based representation is built via the
combination of natural language processing and GUI-based
nudging participants to precisely connect information to the
ontology-structured description. The integration of software
services is implemented with a help of ontology-based smart
space technology.

The proposed environment can be used for decision-making
support in a variety of domains characterized by high levels of
uncertainty and dynamics (emergency and natural disaster
response, government and business scenarios).

ACKNOWLEDGMENT

The research is funded by the Russian Science Foundation
(project # 19-11-00126).

REFERENCES
[1] A. Kittur, B. Smus, S. Khamkar, and R. E. Kraut, “CrowdForge:

Crowdsourcing Complex Work,” in Proceedings of the 24th annual
ACM symposium on User interface software and technology UIST ’11,
2011.

[2] M. A. Valentine, D. Retelny, A. To, N. Rahmati, T. Doshi, and M. S.
Bernstein, “Flash Organizations,” in Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems - CHI ’17, 2017,
pp. 3523–3537.

[3] D. Retelny, M. S. Bernstein, and M. A. Valentine, “No Workflow Can
Ever Be Enough: How Crowdsourcing Workflows Constrain Complex
Work,” Proceedings of the ACM on Human-Computer Interaction, vol.
1, no. 2, p. Article 89, Dec. 2017.

[4] N. R. Jennings et al., “Human-agent collectives,” Communications of
the ACM, vol. 57, no. 12, pp. 80–88, Nov. 2014.

[5] O. Scekic et al., “A Programming Model for Hybrid Collaborative
Adaptive Systems,” IEEE Transactions on Emerging Topics in
Computing, vol. 6750, no. c, pp. 1–1, 2017.

[6] S. Faraj and Y. Xiao, “Coordination in fast-response organizations,”
Management Science, vol. 52, no. 8, pp. 1155–1169, 2006.

[7] B. A. Bechky, “Gaffers, gofers, and grips: Role-based coordination in
temporary organizations,” Organization Science, vol. 17, no. 1, pp. 3–
21, 2006.

[8] D. Retelny et al., “Expert crowdsourcing with flash teams,”
Proceedings of the 27th annual ACM symposium on User interface
software and technology - UIST ’14, pp. 75–85, 2014.

[9] A. Kulkarni, M. Can, and B. Hartmann, “Collaboratively
crowdsourcing workflows with turkomatic,” in Proceedings of the
ACM 2012 conference on Computer Supported Cooperative Work -
CSCW ’12, 2012, p. 1003.

[10] L. G. Terveen, “Overview of human-computer collaboration,”

Knowledge-Based Systems, vol. 8, no. 2–3, pp. 67–81, Apr. 1995.
[11] N. Elmarzouqi, E. Garcia, and J.-C. Lapayre, “CSCW from

Coordination to Collaboration,” 2008, pp. 87–98.
[12] N. Karacapilidis, Ed., Mastering Data-Intensive Collaboration and

Decision Making, vol. 5. Cham: Springer International Publishing,
2014.

[13] N. Karacapilidis and V. Tampakas, “On the Exploitation of
Collaborative Argumentation Structures for Inducing Reasoning
Behavior,” in Proceedings of the 18th International Conference on
WWW/Internet 2019, 2019, pp. 78–84.

[14] F. Ansari and U. Seidenberg, “A Portfolio for Optimal of Human and
Cyber-Pysical Production Systems in Problem-Solving,” in 13th
International Conference on Cognition and Exploratory Learning in
Digital Age (CELDA 2016), 2016, pp. 311–315.

[15] F. Ansari, M. Khobreh, U. Seidenberg, and W. Sihn, “A problem-
solving ontology for human-centered cyber physical production
systems,” CIRP Journal of Manufacturing Science and Technology,
vol. 22, pp. 91–106, Aug. 2018.

[16] T. W. Malone and K. Crowston, “The Interdisciplinary Study of
Coordination,” ACM Computing Surveys (CSUR), vol. 26, no. 1, pp.
87–119, 1994.

[17] K. M. Lhaksmana, Y. Murakami, and T. Ishida, “Role-Based Modeling
for Designing Agent Behavior in Self-Organizing Multi-Agent
Systems,” International Journal of Software Engineering and
Knowledge Engineering, vol. 28, no. 01, pp. 79–96, Jan. 2018.

[18] N. Gilbert, D. Anzola, P. Johnson, C. Elsenbroich, T. Balke, and O.
Dilaver Kalkan, “Self-organizing dynamical systems,” International
Encyclopedia of the Social & Behavioral Sciences. Elsevier, pp. 529–
534, 2015.

[19] H. Simon, “Rational Decision Making in Business Organizations,”
American Economic Association, vol. 69, no. 4, pp. 493–513, 1979.

[20] K. L. Guo, “DECIDE: a decision-making model for more effective
decision making by health care managers,” The Health Care Manager,
vol. 27, no. 2, pp. 118–127, 2008.

[21] L. Mann, R. Harmoni, and C. Power, “The GOFER course in decision
making,” in Teaching decision making to adolescents, J. Baron and R.
V. Brown, Eds. Hillsdale: Lawrence Erlbaum Associates, 1991, pp. 61–
78.

[22] C. Schneider, M. Weinmann, and J. vom Brocke, “Digital nudging,”
Communications of the ACM, vol. 61, no. 7, pp. 67–73, Jun. 2018.

[23] D. T. Luc, “Pareto Optimality,” in Pareto Optimality, Game Theory
And Equilibria. Springer Optimization and Its Applications, vol 17,
Springer, New York, 2008, pp. 481–515.

[24] F. Heylighen, “Stigmergy as a universal coordination mechanism I:
Definition and components,” Cognitive Systems Research, vol. 38, pp.
4–13, Jun. 2016.

[25] D. G. Korzun, S. I. Balandin, and A. V. Gurtov, “Deployment of Smart
Spaces in Internet of Things: Overview of the Design Challenges,”
2013, pp. 48–59.

[26] D. Korzun, “On the Smart Spaces Approach to Semantic-Driven
Design of Service-Oriented Information Systems,” 2016, pp. 181–195.

[27] L. Roffia et al., “A Semantic Publish-Subscribe Architecture for the
Internet of Things,” IEEE Internet of Things Journal, vol. 3, no. 6, pp.
1274–1296, Dec. 2016.

[28] L. Roffia, P. Azzoni, C. Aguzzi, F. Viola, F. Antoniazzi, and T. Salmon
Cinotti, “Dynamic Linked Data: A SPARQL Event Processing
Architecture,” Future Internet, vol. 10, no. 4, p. 36, Apr. 2018.

[29] S. Ahmad, A. Battle, Z. Malkani, and S. Kamvar, “The jabberwocky
programming environment for structured social computing,”
Proceedings of the 24th annual ACM symposium on User interface
software and technology - UIST ’11, pp. 53–64, 2011.

[30] “Slack - Official Site.” [Online]. Available: https://slack.com/.
[31] “Mattermost - Official Site.” [Online]. Available:

https://mattermost.com/.

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

-- 259 --

