
Keyphrase Extraction in Russian and English

Scientific Articles Using Sentence Embeddings

Quang Huy Nguyen

St. Petersburg Electrotechnical University

Saint Petersburg, Russia

nguyenquanghuy1997@gmail.com

Mark Zaslavskiy

St. Petersburg Electrotechnical University, JetBrains Research

Saint Petersburg, Russia

mark.zaslavskiy@gmail.com

Abstract—Keyphrases provide an overview of the articles,
making it a powerful tool for categorizing scientific articles. This
paper introduces and describes our supervised machine learning
model for automatic keywords extraction. The model calculates
features from traditional statistical metrics and new state-of-the-
art sentence embeddings to predict a confidence score annotating
conformity of keyphrase candidate. The model is tested on
corpora of Russian as well as English scientific articles. When
compared to the chosen baseline methods of the experiment,
our model achieved a comparable F1 score when applied to the
Russian corpora; and outperformed them when applied to the
English corpora. Using F1-score as the evaluation metric, we also
experimented with the model’s parameters, such as the embedder
and the set of features used as input. We found the pre-trained
embedder that provides the best possible outcome for our task
and confirmed that our model works best with the full set of
features - non of the input to the model is redundant. For future
works, we set our goal on deploying the model on existing system.
Moreover, we suggest training a delicated embedding module
to improve the model performance when working with articles
written in Russian.

I. INTRODUCTION

In general, a list of keyphrases provides a crucial role in
providing a concrete overview of any scientific literature while
also allowing for categorization and queries. For a keyword
to be qualified as ”good”, it must represent the essence of
the research and provides the readers with its main idea.
Keyphrases are usually chosen manually by authors only when
the authors deem it necessary or required by the publishers.
As a result, there are numerous articles without keywords,
making it harder for other researchers to access and build
upon. On the other hand, when authors want to create a
list of keywords based on their article, there is no way to
assess the relevance of the keyphrase. Therefore, there exists
the need for a scoring rubric for keyword evaluation. Most
systems providing automated verification of common errors
in scientific articles [1] usually cannot check the conformity
of keyphrases assigned by authors. Thus, the result of this
paper can serve as a valuable resource to improve existing
systems. This paper presents a supervised learning model that
calculates a score that estimates the quality of a keyword.
The score can then be used for other tasks such as assessing
keyword candidates or automatic extraction of keywords from
research corpora. In our work, we set our interest of research
in corpora of scientific articles written in English and Russian.
As supervised methods can only work on corpora similar to
the corpus they were trained on, we create a method for
training the model, which can be used to train both English and

Russian versions. The next section features the summarization
of related research literature. Section 3 and 4, respectively,
present the description of the model and the evaluation and
investigation of its performance when applied to research
literature written in English and Russian. Finally, in addition to
presenting the result and conclusion of the paper, section 5 also
features the authors’ suggestion on possible future research and
practical application of this paper.

II. RELATED WORK

This section features some of the traditional methods
and more recent methods that are commonly applied when
extracting keyphrases. Furthermore, a subsection is dedicated
to discussing sentence embedding, since our model relies on
this specific technique.

A. Sentence embeddings

Sentence embedding is the task of representing sentences
and their semantic information in the form of vectors that
can be compared to detect similarity in meaning. Due to the
fact that words constitute a sentence, most sentence embed-
ding methods are based on word embedding methods. From
word2vec [2], which provides word embeddings, sent2vec [3]
and doc2vec [4] utilize average word vectors in ways that
produce meaningful sentence vectors. Compared to word2vec,
the new state-of-the-art BERT (Bidirectional Encoder Rep-
resentations from Transformers) not only sets new records
in accuracy but also enables the possibility of capturing the
context of the word, which means that with the same word
in a different context the model would produce different
embeddings. However, the sentence embeddings that BERT
produces are not suitable to be use with common vector
similarity measures, such as cosine similarity. To overcome this
shortcoming, Sentence-BERT (SBERT) [5] is a modification
of the pre-trained BERT that allows deriving semantically
meaningful sentence embeddings, which then can be compared
using cosine-similarity. Furthermore, SBERT is proved to be
more computationally efficient in terms of speed. Although
there is a limit on the length due to memory constraint, SBERT
can be applied to both shorter phrases as well as paragraphs
containing multiple sentences. Thus, the better and highly
meaningful sentence embeddings provided by SBERT serve
as the core features of our model. Additionally, the method
for making monolingual sentence embeddings multilingual
[6] from the same authors further enhances the capability of
the SBERT embedder by adding multilingual-support to it,

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

which subsequently allows sentences with similar meanings in
different languages to be mapped closer to each other within
the vector space.

B. Keyword extraction

Keyword extraction methods are categorized into two main
types: unsupervised methods and supervised methods. Un-
supervised methods are further categorized into statistical-
based methods and graph-based methods. As one of the
simplest statistical approaches to keyword extraction, TF-IDF
[8] consists of term frequency (TF) - the number of times
the keyword shows up in the article and inverse document
frequency (IDF) - the inverse of the number of times the
keyword appears in the whole corpus of articles. The more
recent EmbedRank [9] is an unsupervised corpus-independent
method for keyword extraction using doc2vec [4] sentence
embeddings. The keyphrase candidates and the documents
are represented in high-dimensional vector space, with the
distances between the vectors are then calculated and ranked.
Whereas graph-based methods, which involve representing the
documents themselves as graphs, are considered to be state-of-
the-art regarding unsupervised keyphrase extraction. The basic
idea of graph-based methods is to decide the importance of
a vertex, which represents a word or phrase within a graph,
which represents the document. From the success of PageRank
[10] for ranking web pages, various graph-based methods for
extracting keyphrases are proposed. For example:

• TextRank [11] represents tokens extracted from the
text as nodes while word co-occurrences are described
with edges.

• PositionRank [12] instead incorporated the positions
of words and their frequency into the graph.

• TopicRank [13] clusters candidate keyphrases into top-
ics before applying the graph-based ranking algorithm.
The keyphrases are then selected from the top-ranked
topics.

• MultipartiteRank [14] further leveraged TopicRank by
storing keyphrase candidates and their topical relations
in a single multipartite graph.

In contrast to the aforementioned unsupervised methods,
supervised methods required an annotated dataset to train
the classifier for labelling keyphrases and non-keyphrases.
The KEA (Keyphrase Extraction Algorithm) [15] uses term
frequency (TF), inverse document frequency (IDF), and first
occurrence, which is the relative position of the first appear-
ance of the phrase in the article as input features for training
a Naive Bayes model. Nguyen and Kan [16] extended KEA
with morphological features and section distribution vectors
(the frequency of keyphrase candidates in different sections
of the article) of keyphrases. Existing methods either do not
consider the link between the article content and the keyword
meaning, or compare the embedding vectors of the keyword
and the article, but leave out the relation between the keyphrase
and different part of the article (in EmbedRank [9] case, the
article is embedded as a single vector). To overcome this,
in our model, aiming for the keywords to hold the most
relevance to the article, we decided to compute the semantic
textual similarity of the candidate keyphrases to sections of

the article by using the state-of-the-art sentence embeddings
provided by SBERT. Furthermore, since we are only interested
in corpora of scientific articles in this work, we decided to
choose supervised method for our model.

III. PROPOSED MODEL

In this paper, we propose a supervised model for extracting
keyphrases from scientific articles. This section details our
model for extracting keyphrases from documents. The method
used to construct the model consists of three main processes:

1) Candidate phrase identification.
2) Feature extraction.
3) Keyphrase extraction using a neural network.

The dataflow in processes are visualized in Fig. 1.

A. Candidate phrase identification

Several methods of choosing candidates are considered,
for example, selection based on stopwords and maximum
word length [15] [11], selecting all simplex noun phrases
[16], selection based on part-of-speech [14]. In our model,
candidate extraction from text is performed based on part-
of-speech (POS) sequences, as this method allows extracting
most of the keyphrases, while avoiding unnecessary candidates
with redundant POS sequences. In order to do this, first, the
article must go through a Natural Language Processing (NLP)
pipelines for POS tagging. In our experiment, we used Stanza
[17] for this task, due to its wide range of language support.
After that, the candidates are extracted based on a statistical
analysis of the common POS sequences that forms keyphrases
in the corpora. As the experiments are performed on both
English and Russian corpora, different candidates are extracted
depending on the language. The pattern sequences for each
language are shown in the Table I. The extracted sequences
are highlighted.

B. Features extraction

Features are defined as elements of input vectors that are
fed to the neural network. After the keyphrases candidates have
been extracted from the article, six features are extracted from
the candidates and the article. Those features are:

• Keyphrase length: Due to the fact that a keyphrase
might contain more than one word, keyphrase length
is defined as the number of words in a keyphrase.
As a common practice, before being fed to the neural
network, features are often rescaled - normalized to
the same value range [7]. For keyphrase length, we
apply a simple linear rescaling to normalize the value
by dividing it by the length of the longest keyphrases
in the corpus.

• Term frequency and document frequency: These are
metrics commonly used in information retrieval [8].

◦ Term frequency is defined by the formula:

TF =
tc(P,D)

|D|

where tc(P,D) - the number of times P ap-
pears in D, |D| - the number of words in D

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 335 --

TABLE I. MOST COMMON PART-OF-SPEECH SEQUENCES OF KEYPHRASES AND THEIR RESPECTIVE RATES OF APPEARANCE

English Russian

Pattern Percentage Pattern Percentage

NOUN NOUN 24.21% PROPN PROPN 18.31%

ADJ NOUN 20.43% ADJ NOUN 16.89%

NOUN 12.90% NOUN 12.83%

ADJ NOUN NOUN 8.23% PROPN 11.29%

NOUN NOUN NOUN 5.83% NOUN NOUN 7.95%

ADJ ADJ NOUN 2.42% PROPN PROPN PROPN 5.84%

VERB NOUN 2.31% NOUN ADJ NOUN 2.11%

PROPN 1.79% ADJ NOUN NOUN 1.72%

VERB NOUN NOUN 1.30% ADJ ADJ NOUN 1.69%

ADJ NOUN NOUN NOUN 1.14% NOUN NOUN NOUN 1.51%

NOUN PUNCT NOUN NOUN 1.13% PROPN X PROPN PROPN 1.22%

Others <1% Others <1%

◦ Document frequency is defined by the formula:

DF =
dc(P,C)

|C|

where dc(P,C) - the number of documents in
corpus C in which P appears, |C| - the size
of the examined corpus C

Term frequency indicates the relevance of a phrase
in a document, whereas document frequency indicates
the importance of a phrase in the corpus. Document
frequency is calculated and saved during the training
process of the model.

• First appearance: This feature is calculated as the
position of the first appearance of the phrase relative
to the length of the document, resulting in a number
between 0 and 1.

• Similarity curve: The similarity curves display the
connection between the varying relationships between
the candidate keyphrase and sections of the article.
For example, a keyphrase could represent the essence
of the introduction or abstract of an article but could
seem irrelevant to the section discussing future ap-
plication or experiment results. Academic publica-
tions tend to follow a consistent sequential structure:
starting with Abstract, followed by an Introduction,
Related Work, Methods, Evaluation, Conclusions and

finally References. Based on this assumption, [16]
utilized a logical section detection module to extract
sections of the article based on headers. However, our
model simply divides the whole text into paragraphs
of length convenient for our sentence embedder. The
candidate keyphrase, together with the paragraphs,
then go through a 3-step algorithm to produce the
similarity curve:

1) Calculate embeddings for each paragraph of
the article and the candidate keyphrases using
sentence embeddings.

2) Calculate the cosine similarity of the phrase
to each of the paragraph embeddings.

3) Due to the variation in the number of para-
graphs between articles, we normalize this
feature by creating a 25-point interpolation
curve from the graph, built from the similarity
scores in the previous step.

Ultimately, we obtain an array of 29 float-number features, all
normalized between 0 and 1 for each candidate keyphrase.

C. Keyphrase extraction using neural network

Before the neural network could be used for keyphrase
extraction, a training process must be performed. The training
required an annotated dataset of documents with annotated
keyphrases. Each document in the dataset consisted of the full

Fig. 1. Dataflow in training and extraction processes

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 336 --

0.1

0.2

0.3

0.4

A
v
e
ra

g
e
 l

o
s
s

Training loss

Validation loss

0 20 40 60 80 100

Epoch

0

20

40

60

80

100

P
e
rc

e
n

ta
g

e Precision

Recall

F1

Accuracy

Fig. 2. a. (Top) Average loss over training progress. b. (Bottom) Evaluation metrics over training progress

article’s text and a set of keyphrases annotated by the authors
or human annotators. After the candidate phrase identification
process, we gained a set of candidates. This set of candi-
dates was separated into two sample sets: a positive sample
set containing annotated keyphrases, and a negative sample
set containing the rest of the candidate keyphrases that we
extracted in the previous step. The feature extraction process
was applied to each sample in both of these sets to form the
input. In the case of input which originated from the positive
sample set, we assigned a value of “1.0” as expected output; for
input which originated from the negative sample set - a value of
“0.0”. Both types of samples were redistributed into a training
set and a validation set in a 3:1 ratio. Due to the fact that
the number of non-keyphrase candidates vastly outnumbered
the number of true keyphrases, the research team had to face a
class imbalance in the data, which is known to negatively affect
the model accuracy [18]. Overcoming this problem required a
data manipulation method to balance the dataset [18], which,
in our case, was applying simple random-oversampling on the
training dataset. A Multilayer Perceptron Neural Network was
built and trained with the help of Pytorch [19] on the training
set to classify the phrases into one of two categories: positive
(keyphrase) or negative (non-keyphrase). The neural network
used in our model consists of:

• The input layer that consists of 29 neurons correspond-
ing to the array of 29 float-numbered features received
during feature extraction.

• The hidden layers, located between the input layer
and output layer, is where all the calculation occurs.
The number of layers and number of neurons per
layer (which is the same for all hidden layers) plays
a key role regarding the behaviour of the network.
Based on this information, only through various trials
and errors did the research team successfully choose
the right value for these two parameters. During our
experiment, the number of layers was tested from 1

to 4, and the number of neurons per layer was tested
within a range of 300 to 700 with a step of 50 neurons.
Based on the performance observed during the training
process, the configuration of 3 layers, each with 450
neurons, was considered to be the most optimal. All
hidden layers uses LeakyReLU [20] activation func-
tion as it has many advantages over the old ReLU [21]
activation function including resolving dead neuron
issues. Overfitting, which happens when the neural
network is too familiar with the training set and does
not generalize well when working with new data, is
also a problem that we must take into account when
building a neural network. Adding a dropout layer is
proven to be an effective regularization technique to
reduce overfitting when training a network [22].

• The output layer contains a single neuron that serves
as the output of the network. A sigmoid activation
function is applied to the output layer to map the
output to a range between 0 and 1.

We used Adam [23] optimization algorithm to train the
model as it is one of the best optimization algorithms for deep
learning with fast growing popularity [24]. Over the training
progress, the learning rate - the rate at which the network
updates its parameters, initially has a value of 0.001 then
slowly decayed over time as the loss reduces and the network
gets closer to its optimum state. The model was trained on
the dataset in mini-batch with a size of 1024 samples and
trained for a total of 100 epochs. For performance evaluation,
accuracy (total number of cases in which the model predicts
correctly/total number of predictions) would not be able to
provide us with much information due to the fact that this
was an imbalanced classification problem [18]. Therefore, we
needed other metrics to evaluate the performance of our model.
We chose the 3 metrics:

• Precision: the ratio of correctly predicted positive ob-

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 337 --

TABLE II. THE DATASETS USED IN OUR PAPER

Dataset Number of documents Language Average tokens Average number of keywords Keyword missing in documents

Inspec 2000 English 140.3 13.5 45.43%

NUS 211 English 7893.4 10.8 25.68%

CL mixed 900 Russian 2197.7 7.6 42.58%

CL long 900 Russian 3117.4 7.9 39.59%

CL short 900 Russian 1393.7 7.2 38.12%

servations to the total predicted positive observations.

Precision =
TP

TP + FP

where TP - number of true positive cases, FP - number
of false positive cases

• Recall is the ratio of correctly predicted positive
observations to all observations in the actual class

Recall =
TP

TP + FN

where TP - number of true positive cases, FN - number
of false negative cases

• F1 Score is the weighted average of Precision and
Recall.

F1 = 2 ∗
Precision ∗Recall

Precision+Recall

The total losses in the training process can be seen in Fig.
2.a. The change in metrics that were used to evaluate the
performance of the model (Precision, Recall, F1, Accuracy)
can be seen in Fig. 2.b.

IV. EXPERIMENTS AND RESULTS

There are commonly two approaches when evaluating a
keyphrase extraction model. The first approach involves a
human annotator, who reads the article and the result extracted
by the model and assesses them manually. This approach
requires a high amount of manual effort, and the result can be
affected by subjective opinions. The second approach makes
use of the metrics like Precision, Recall, and F1-score and
compares the extracted list of keyphrases with the list of
keyphrases annotated by authors. One can argue that the list
of keyphrases annotated by authors can also be subjective.
However, with a large number of articles comes a large number
of authors. Thus, we can simply treat the poorly annotated
keyphrases as noise in the dataset.

A. Dataset

There are many datasets in English available for evaluating
keyphrase extraction models. We decided to use the Inspec
dataset [25] and the NUS dataset [16]. The Inspec dataset
consists of 2000 short documents from scientific journal ab-
stracts with two sets of keyphrases assigned. To compare with
other methods, we trained our model on the training set (1500
documents) and evaluated our model on the test dataset (500
documents). NUS [16] consists of 211 full scientific papers in
English. Each paper has several sets of keyphrases assigned
by authors and annotators. Again, we trained the model on
150 documents and evaluated on 61 remaining documents.
Unfortunately, we could not find a publicly available scien-
tific document dataset in Russian. Thus, we constructed our

dataset by running a scraper on CyberLeninka. CyberLeninka
is a Russian scientific electronic library. A vast collection of
scientific articles are available for free. We decided to fetch
articles in the field of Computer and Information Science as
this is the closest to the field of research of our faculty -
Computer Science and Technology, and if the module is going
to be added to the existing system for checking student writings
[1], this fits the needs of our faculty. In total, 2098 articles
with authors assigned list of keyphrases were fetched. Most of
them are from VAK (Higher Attestation Commission - VAK
[26] is a Russian national government agency that oversees
awarding of advanced academic degrees) level journals. Due
to memory and resource constraints, we then divided this
dataset into three smaller datasets by article length. Each of
these smaller datasets consists of 900 articles. The CL-short
contains short articles of length fewer than 10000 characters.
CL-long contains longer articles of length greater than 10000.
And CL-mixed contains 900 random documents - short and
long. Similar to the English dataset, these datasets are further
split into a training set (600 documents) and a validation set
(300 documents). The detailed information on the datasets can
be seen in Table II All datasets are going through the same
cleanup process, which:

• Remove special symbols.

• Remove the list of annotated keyphrases in the text.

For future researches, the Russian dataset (CLDataset) is made
publicly available at [27]

B. Experiment with different sentence embedders

Due to sentence embeddings serving as the foundation for
the core features of our model, we want to see how changing
the embedding module would have affected the performance
of our model. We trained and evaluated the performance of the
model with different embedders on CL-mixed datasets.SBERT
[5] authors provided 4 multilingual models for semantic textual
similarity task [28]. We tested each of these embedder models
as the embedding module in our model. The results are
populated in Table III

TABLE III. RESULTS ON CL MIXED VALIDATION SET WITH

DIFFERENT EMBEDDING MODELS

Model Precision Recall F1

distilbert-multilingual-nli-stsb-qr 18.58% 79.92% 30.15%

xlm-r-distilroberta-base-paraphrase-v1 31.43% 70.68% 43.52%

distiluse-base-multilingual-cased 35.00% 69.85% 46.64%

xlm-r-bert-base-nli-stsb-mean-tokens 38.71% 64.91% 48.49%

From the result, the xlm-r-bert-base-nli-stsb-mean-tokens
embedding model gave the best result in terms of F1-score.
Thus, this module was selected as our embedding module in
succeeding experiments.

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 338 --

C. Experiment with different sets of features

For the purpose of assessing the importance of the features
that were fed into our neural network, we masked some of the
features in the input and examined the evaluation metrics when
training the network. We tested with 4 set-ups:

• Setup 1: Leaving phrase length (PL), term frequency
(TF) and first appearance (FA)

• Setup 2: Leaving PL, TF, FA and document frequency
(DF)

• Setup 3: Leaving PL, TF, FA and similarity curve (SC)

• Setup 4: Leaving PL, TF, FA DF and SC

TABLE IV. RESULTS ON CL MIXED VALIDATION SET WITH

DIFFERENT SETS OF FEATURES

Feature set Precision Recall F1

PL+TF+FA 15.11% 80.29% 25.44%

PL+TF+FA+SC 33.67% 66.41% 44.68%

PL+TF+FA+DF 14.78% 81.63% 25.03%

PL+TF+FA+DF+SC 36.10% 65.46% 46.54%

Table IV contained the evaluation result, from which our
observation has shown that setup 4 (PL, TF, FA, DF, SC)
allowed for better results compared to other setups. This
result also solidified the notion that none of our features were
unnecessary.

D. Benchmark against other algorithms

In this part, we tested our model against five keyphrase
extraction algorithms (implementations provided by pke [29]):
TFIDF [8], KEA [15], TextRank [11], Multipartite [14], Posi-
tionRank [12]. Due to the fact that the benchmark results of the
algorithms when applied to CL short, CL long and CL mixed
were observed to be virtually identical, Table V only featured
the result for CL mixed. For TextRank we set the window size
to 2 and top-percent (the number of top-ranked words taken
into account when building phrases) to 33 percent. For other
algorithms, we left the parameters as default. We followed
the common practice to stem the golden-scale keyphrases and
extracted keyphrases with SnowballStemmer [30]. This was
done in order to normalize the result, treating words in different
tenses (for both English and Russian), cases, genders (for
Russian). All algorithms were fed with the validation set of
each dataset, and were required to extract top N candidate
keyphrases. The result of the experiment for N=3, N=5 and
N=7 is populated in Table V

As shown in Table V, our model performs better than
competing algorithms in terms of F1-score for the English
models. However, the performance archived on the Russian
dataset is at a similar level to KEA and simple TFIDF (only
better by a mere percent). The most reasonable explanation for
this result would be the differences in the performance of the
embedding module when working on different languages. All
SBERT models used were originally trained in English, then
expanded to support multilingual. As mentioned in the original
paper [5], adding more languages to a model could degrade
the performance as the capacity of the model would remain
the same.

V. CONCLUSION AND FUTURE WORKS

In this paper, we have introduced, described, and evaluated
our model for keywords extraction in English and Russian
scientific articles. When compared to the chosen baseline
methods, models and algorithm, our model was able to achieve
a comparable F1 score when applied to the Russian corpora;
and outperformed them when applied to the English corpora.
The results show that the model could achieve a Recall score
of 0.65, which means it could find at least half of the keywords
that the author would use to describe his article. Our model has
two key aspects: having the multilingual version of SBERT as
the foundation of the model, and utilizing Stanza pipelines for
preprocessing tasks. These two key aspects allow the models
to be adapted for scientific corpora of other languages besides
English and Russians. Moreover, as the model provides a con-
fidence score between 0 and 1, it could be used as a reference
for authors to assess their choice of keywords. Furthermore,
during the evaluation of our research, we also compiled and
introduced a preprocessed dataset of more than 2000 scientific
publications with an annotated list of key phrases which can
be useful for other future work on keyphrase extraction, or in
general fields including text mining, information retrieval, and
natural language processing. Our current work focuses on the
deployment of this model on existing systems, for example, the
system for checking students’ assignment in scientific writing
[1]. In the future, it would be of great interest to train our own
sentence embedding module, re-evaluate our model and try to
get better results for scientific articles written in Russian.

REFERENCES

[1] E.I. Blees and M.M. Zaslavskiy, “Criteria for text conformity to scientific
style”, Scientific and Technical Journal of Information Technologies,

Mechanics and Optics, vol.19, Apr.2019, pp.299-305.

[2] T. Mikolov, K. Chen, G.S. Corrado and J. Dean, “Efficient Estimation
of Word Representations in Vector Space”, Proceedings of Workshop at

ICLR, Jan.2013.

[3] M. Pagliardini, P. Gupta and M. Jaggi, “Unsupervised Learning of Sen-
tence Embeddings Using Compositional n-Gram Features”, Proceedings

of the 2018 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, vol.1,
Jan.2018, pp.528-540.

[4] Q. Le and T. Mikolov, “Distributed Representations of Sentences and
Documents”, 31st International Conference on Machine Learning, ICML

2014, vol.4, May.2014.

[5] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks”, Proceedings of the 2019 Conference

on Empirical Methods in Natural Language Processing, Nov.2019.

[6] N. Reimers and I. Gurevych, “Making Monolingual Sentence Embed-
dings Multilingual using Knowledge Distillation”, Proceedings of the

2019 Conference on Empirical Methods in Natural Language Processing,
Nov.2020.

[7] C. Bishop, Neural Networks For Pattern Recognition. Oxford University
Press, Jan.2005.

[8] G. Salton and M.J. McGill, Introduction to modern information retrieval.
McGraw-Hill, Inc., 1986.

[9] K. Bennani-Smires, C. Musat, M. Jaggi, A. Hossmann and M. Baeriswyl,
“EmbedRank: Unsupervised Keyphrase Extraction using Sentence Em-
beddings”, Proceedings of the 22nd Conference on Computational Nat-

ural Language Learning (CoNLL 2018), Oct.2018, pp.221-229.

[10] L. Page, S. Brin, R. Motwani and T. Winograd, “The PageRank Citation
Ranking: Bringing Order to the Web”, Stanford InfoLab, 1999.

[11] R. Mihalcea and P. Tarau, “TextRank: Bringing Order into Text”,
Proceedings of the 2004 Conference on Empirical Methods in Natural

Language Processing, Jul.2004, pp.404-411.

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 339 --

TABLE V. COMPARISON WITH OTHER METHODS ON INSPEC, NUS AND CL MIXED DATASETS

N Model/Algorithm
Inspec NUS CL mixed

Precision Recall F1 Precision Recall F1 Precision Recall F1

3

TF-IDF 20.80% 4.66% 7.61% 16.94% 7.03% 9.94% 14.11% 5.60% 8.02%

KEA 20.00% 4.48% 7.32% 16.94% 7.03% 9.94% 14.89% 5.91% 8.46%

TextRank 9.62% 2.13% 3.49% 10.93% 4.54% 6.41% 5.67% 2.25% 3.22%

MultipartiteRank 32.73% 7.33% 11.98% 15.30% 6.35% 8.97% 8.78% 3.48% 4.99%

PositionRank 35.33% 7.91% 12.93% 4.37% 1.81% 2.56% 4.33% 1.72% 2.46%

Our model 35.80% 8.00% 13.08% 23.50% 9.75% 13.78% 15.13% 6.00% 8.59%

5

TF-IDF 19.28% 7.20% 10.48% 15.41% 10.66% 12.60% 12.00% 7.94% 9.55%

KEA 17.68% 6.60% 9.61% 16.72% 11.56% 13.67% 13.20% 8.73% 10.51%

TextRank 11.31% 4.06% 5.98% 7.54% 5.22% 6.17% 4.67% 3.09% 3.72%

MultipartiteRank 27.87% 10.39% 15.14% 13.44% 9.30% 10.99% 7.33% 4.85% 5.84%

PositionRank 31.21% 11.63% 16.95% 4.92% 3.40% 4.02% 5.00% 3.31% 3.98%

Our model 32.89% 12.24% 17.84% 21.45% 14.74% 17.47% 12.68% 8.38% 10.09%

7

TF-IDF 17.60% 9.20% 12.08% 14.75% 14.29% 14.52% 10.33% 9.57% 9.94%

KEA 16.46% 8.60% 11.30% 15.46% 14.97% 15.21% 11.24% 10.41% 10.81%

TextRank 10.89% 5.20% 7.03% 7.49% 7.26% 7.37% 4.10% 3.79% 3.94%

MultipartiteRank 25.47% 13.26% 17.44% 12.88% 12.47% 12.67% 6.86% 6.35% 6.59%

PositionRank 28.48% 14.80% 19.47% 4.68% 4.54% 4.61% 4.52% 4.19% 4.35%

Our model 29.91% 15.57% 20.48% 18.68% 17.91% 18.29% 11.68% 10.80% 11.23%

[12] C. Florescu and C. Caragea, “PositionRank: An Unsupervised Approach
to Keyphrase Extraction from Scholarly Documents”, Proceedings of the

Annual Meeting of the Association for Computational Linguistics (ACL

2017), Aug.2017.

[13] A. Bougouin, F. Boudin and B. Daille, “TopicRank: Graph-Based Topic
Ranking for Keyphrase Extraction”, Proceedings of the Sixth Interna-

tional Joint Conference on Natural Language Processing, Oct.2013,
pp.543-551.

[14] F. Boudin, “Unsupervised Keyphrase Extraction with Multipartite
Graphs”, Proceedings of the 2018 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies, vol.2, Jan.2018, pp.667-672.

[15] I.H. Witten, G.W. Paynter, E. Frank, C. Gutwin and C.G. Nevill-
Manning, “KEA: Practical Automatic Keyphrase Extraction”, Proceed-

ings of the Fourth ACM Conference on Digital Libraries, Aug.1999,
pp.254-255.

[16] T.D. Nguyen and M. Kan, “Keyphrase Extraction in Scientific Pub-
lications”, Proceedings of the Asian Digital Libraries. Looking Back

10 Years and Forging New Frontiers, 10th International Conference on

Asian Digital Libraries (ICADL 2007), Dec.2007, pp.317-326.

[17] P. Qi, Y. Zhang, Y. Zhang, J. Bolton and C.D. Manning, “Stanza: A
Python Natural Language Processing Toolkit for Many Human Lan-
guages”. Proceedings of the 58th Annual Meeting of the Association

for Computational Linguistics: System Demonstrations, Jan.2020.

[18] X. Guo, Y. Yin, C. Dong, G. Yang and G. Zhou, “On the Class
Imbalance Problem”, Fourth International Conference on Natural Com-

putation, ICNC ’08, vol.4, Oct.2008.

[19] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.
Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E.
Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai and S. Chintala, “PyTorch: An Imperative Style, High-
Performance Deep Learning Library”, Advances in Neural Information

Processing Systems 32, Curran Associates, Inc., 2019, pp.8024-8035.

[20] A.L. Maas, A.Y. Hannun and A.Y. Ng, “Rectifier nonlinearities improve
neural network acoustic models”, Proceedings of the 30th International

Conference on Machine Learning (ICML-13), Jun.2013.

[21] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted
Boltzmann Machines”, Proceedings of the 27th International Conference

on Machine Learning (ICML-10), Jun.2010.

[22] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever and R. Salakhut-
dinov, “Improving neural networks by preventing co-adaptation of feature
detectors”, ArXiv, vol.abs/1207.0580, Jul.2012.

[23] D. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization”,
International Conference on Learning Representations, Dec.2014.

[24] S. Ruder, “An overview of gradient descent optimization algorithms”,
ArXiv, vol.abs/1609.04747, Jul.2012.

[25] A. Hulth, “Improved Automatic Keyword Extraction Given More Lin-
guistic Knowledge”, Proceedings of the 2003 Conference on Empirical

Methods in Natural Language Processing, (EMNLP 03), Jun.2003,
pp.216-233.

[26] Official website of the Higher Attestation Commision, Web:
https://vak.minobrnauki.gov.ru/main.

[27] Q.H Nguyen, CLDataset, Web: https://github.com/levi218/CLDataset.

[28] N. Reimers and I. Gurevych, SBERT Pretrained
Models for Semantic Textual Semilarity, Web:
https://www.sbert.net/docs/pretrained models.html.

[29] F. Boudin, “pke: an open source python-based keyphrase extraction
toolkit”, Proceedings of COLING 2016, the 26th International Confer-

ence on Computational Linguistics: System Demonstrations, Dec.2016,
pp.69-73.

[30] M.F. Porter, “Snowball: A language for stemming algorithms”,
Jan.2001.

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 340 --

