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Abstract—Currently, knowledge bases are actively used in
many applications, such as search engines, dialog assistants.
Primarily, it happens due to the improvement of existing methods
through the analysis of meaning. Knowledge bases have different
knowledge representations. Semantic networks, frames, semantic
web, production rules are used for this purpose. But existing
methods of knowledge representation have limitations. Thus,
RDF is a flat model, and production rules contradict each other.
Therefore, it is proposed to apply metagraphs to combine the
advantages of different representations. The paper describes the
emergence feature of this method for complex knowledge
representation. An analytical assessment of the search time is
carried out for a concept in the knowledge base. The authors
implemented the proposed method of representation in a
knowledge base management system and carried out an
experiment to evaluate its performance.

[. INTRODUCTION

Various ways of representing knowledge have drawbacks
that the authors propose to overcome by using the metagraph
model for knowledge base. It is a version of semantic network
extended with metagraph model and proposed representation
of concepts based on their extension and intension. The
purpose of the study is the description for the metagraph
representation of knowledge as well as an analytical and
experimental assessment for the time of concept search in the
knowledge base.

A. Knowledge representations

Knowledge bases expand the capabilities of dialog
assistants and search engines. They improve the quality of
their work through the analysis of meaning. The knowledge
base includes two components: knowledge representation and
an inference engine [1]. The knowledge representation
requires a specific format. For example, a semantic network,
frames, production rules can be used.

The production model of knowledge representation is
based on the application of rules. Rules have a disadvantage
when they begin to contradict each other with a large number
of rules. One of the ways to overcome this problem is fuzzy
inference.

The semantic network [1, 2] is a kind of graph, the vertices
of which are concepts, and the edges are the relations between
them. An example of a semantic web is WordNet [3]. It
describes concepts that are relevant to all subject areas. In
WordNet [4], nouns are connected to each other by various

types of relationships: synonyms, antonyms, hyperonyms,
hyponyms, holonyms, and meronyms.

The frame representation appeared in the 80s. Frame
elements contain slots, which in turn can be frames. Thus,
frames are networked and can be inherited from each other.
Recently, knowledge representation research has been actively
pursued with the Semantic Web. And the results of frame
languages turned out to be very useful because classifiers
enable the network to evolve constantly.

B. Concepts

Knowledge representation is closely related to the term
“concept.” A concept is a semantic meaning, the content of a
sign, also called a significat. The concepts are connected with
each other by relations. The most common and the most
important relationship between concepts is the generalization
one. It shows that a concept is a kind or a subclass of another
concept.

Thus, a semantic network with generalization concepts is a
hierarchical structure, where at the very top are the most
general concepts, and at the bottom are particular concepts. A
generalization relation is a directed edge in a semantic web
graph. It is directed from more specific to a more general
concept.

Specialized languages, such as SPARQL [5], are often
used to access the Semantic Web data. Examples of publicly
available knowledge bases are Freebase, DBpedia, Wikidata.
Their data can be used to create other knowledge bases. But
they are mostly limited to data from the Wikipedia project and
other public projects, and there are also problems with
disambiguation analysis. An important advantage of the
semantic network is its independence from the language, while
the concepts of ontology have linguistic meanings.

C. Relation types

A hyponym is a private concept to another one in relation.
A hyponym is the result of a logical operation of limitation,
that is, the addition of a new feature to the concept content. A
hyperonym is a concept with a more general meaning. A
hyperonym is the result of a logical generalization operation,
that is, the removal of some feature to obtain a more general
concept. Some semantic networks can only be built from
hyperonyms and hyponyms [1]. A holonym is a concept that
denotes a whole concept that includes another one as a part.
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Meronym is an integral part of the whole concept. It is called,
in another way, a partonym.

With the help of the semantic web, two essential aspects of
a concept can be identified. It has the intension and the
extension. The extension is a set of concepts that are more
specific to the considered one. The extension means the scope
of a concept, a list of objects that can be designated by a given
concept, their varieties. The intension is the content of a
concept, a list of features that characterizes this concept and
distinguishes it from the others. Moreover, the scope of the
concept and its content are connected by the law of the inverse
relationship. The more content, the less the volume of the
concept and vice versa.

D. Complex networks

According to [6]: “a complex network is a graph (network)
with non-trivial topological features — features that do not
occur in simple networks such as lattices or random graphs but
often occur in graphs modeling of real systems.” The terms
“complex network” and “complex graph” are often used
synonymously.

According to [7]: “the term ‘complex network,” or simply
‘network,” usually refers to real systems while the term
‘graph’ is generally considered as the mathematical
representation of a network.” In this article, we also
acknowledge these terms synonymously.

One of the most important types of such models is
“complex networks with emergence.” The term “emergence”
is used in general system theory. The emergent element means
a whole that cannot be separated into its component parts. As
far as the authors know, currently, there are two “complex
networks with emergence” models that exist: hypernetworks
and metagraphs.

In this article, we will consider the features of using the
metagraph model as a data model in text search tasks.

II. THE METAGRAPH MODEL VS. THE HYPERNETWORK MODEL

A. Hypernetwork model

This section briefly discusses the advantages of the
metagraph model over the hypernetwork model based on our
articles [8, 9].

The main element of the hypernetwork model is
hypergraph. According to [10], the hypergraph may be defined
as follows:

HG =(V,HE),v, €V, he,  HE, (1)
where HG — hypergraph; V — set of hypergraph vertices; HE —
set of non-empty subsets of J called hyperedges; v, —
hypergraph vertex; he; — hypergraph hyperedge.

It should be emphasized that in accordance with (1), the
hyperedge inclusion operation is not explicitly defined. Thus,
the hypergraph itself is a near flat graph model that does not
fully implement the emergence principle. However, the
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hypergraph model is the basis

hypernetwork model.

for a more complex

Consider the version of the hypernetwork model that was
proposed by Professor Jeffrey Johnson in his monography

[11]. Given the hypergraphs ps=ws,, WS, Ws,,...WS, . The
hypergraph ps=ws, is called the primary network. The
hypergraph WS; is called a secondary network of order i.

B. Hypersimplex

The main idea of Professor J. Johnson’s variant of the
hypernetwork model is the idea of hypersimplex (the term is
adopted from polyhedral combinatorics). According to [11], a
hypersimplex is an ordered set of vertices with an explicit n-
ary relation, and a hypernetwork is a set of hypersimplices. In
a hierarchical system, the hypersimplex combines k elements
at level N (base) with one element at level N+/ (apex). Thus,
hypersimplex establishes an emergence between two adjoining
levels. An example of a hypernetwork is shown in Fig. 1.

—

( {hvs) he; ) WS,
S~ -
,-’/ hyper- '.

/ simplex

(hVG)

Fig. 1. The example of the hypernetwork

The primary network PS is formed by the vertices of
hyperedges /e, and he,. The first level WS, of the secondary
network is formed by the vertices of hyperedge he;. The
hypersimplex is emphasized with the dash-dotted line. The
hypersimplex is formed by the base (vertices v; and v, of PS)
and apex (vertex vs of WS;). Unlike the relatively simple
hypergraph model, the hypernetwork model is a full model
with an emergence.

C. Metagraph description

Unlike the hypernetwork model, the metagraph model does
not explicitly use hypergraphs. Let’s consider the features of
the metagraph model, based on articles [8, 9, 12]. Metagraph
has four elements (2).

MG =(V,MV ,E,ME), )
where MG — metagraph; V' — set of metagraph vertices; MV —
set of metagraph metavertices; £ — set of metagraph edges;
ME — set of metagraph metaedges.

Metaedge is an optional element of the metagraph model
aimed for process description and is not considered for data
model purposes. Metagraph vertex is described by a set of
attributes (3):

v, = {atrk},vl_ ev,

©)

where v; — metagraph vertex; atr; — attribute.
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Metagraph edge (4) is described by a set of attributes, the
source and destination vertices, and the edge direction flag:

e = <VS,VE,eo,{alrk}>,ei € E,eo = true| false,

(4)

where e¢; — metagraph edge; vs — source vertex (metavertex) of
the edge; vy — destination vertex (metavertex) of the edge;

eo — edge direction flag (eo=true — directed edge,
eo=false — undirected edge); atr, — attribute.
The metagraph fragment is described as (5).
MG, ={ev },ev, e (V UE UMV UME), (5)

where MG; — metagraph fragment; ev; — an element that
belongs to the union of vertices, edges, metavertices, and
metaedges.

The metagraph metavertex has the following structure (6).

mv, :<{atrk},MGj>,mv,. eMV, (6)
where mv; — metagraph metavertex belongs to a set of
metagraph metavertices MV atry — attribute, MG; — metagraph
fragment.

The metavertex can be written as (7).

me, = <vs,ve,{atrk } ,MGJ.>,me,. € ME, 7)
where me; is a metaedge in a set of metaedges ME; vs and ve is
the first and the second vertices of the metaedge, atr, —
attribute, MG, — metagraph fragment.

D. Metagraph features

Metavertex, in addition to the attributes, includes a
fragment of the metagraph. The presence of private attributes
and connections for metavertex is a distinguishing feature of
the metagraph. It makes the definition of metagraph emergent
— metavertex may include a number of lower-level elements
and, in turn, may be included in a number of higher-level
elements. The example of the data metagraph (shown in Fig.
2) contains three metavertices: mv,, mv, and mv;.

Fig. 2. The example of the metagraph

Metavertex mv; contains vertices v;, v,, v; and connecting
them edges e;, e,, e;. Metavertex mv, contains vertices vy, Vs,
and connecting them edge e;. Edges ey, es are examples of
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edges connecting vertices v,-v;, and v;-vs are contained in
different metavertices mv; and mv,. Edge e; is an example of
the edge connecting metavertices mv; and mv,. Edge eg is an
example of the edge connecting vertex v, and metavertex mv,.
Metavertex mv; contains metavertex mv,, vertices v,, v;, and
edge e, from metavertex mv; and also edges ey, e5, eg showing
the emergent nature of the metagraph structure.

E. Comparison metagraph and hypernetwork

Consider the differences between the hypernetwork and
metagraph models. According to the definition of a
hypernetwork, it is a layered description of graphs. It is
assumed that the hypergraphs may be divided into
homogeneous layers and then mapped with mappings or
combined with hypersimplices. The metagraph approach is
more flexible because it allows combining arbitrary elements
that may be layered or not using metavertices.

Comparing the hypernetwork and metagraph models, we
can make the following notes:

e Hypernetwork model may be considered as
“horizontal” or layer-oriented. The emergence appears
between adjoining levels using hypersimplices. The
metagraph model may be considered as “vertical” or
aspect-oriented. The emergence appears at any level
using metavertices.
In the hypernetwork model, the elements are organized
using hypergraphs inside layers and using
hypersimplices between layers. In the metagraph
model, metavertices are used for organizing elements
both inside layers and between layers. Hypersimplex
may be considered as a particular case of metavertex.
Metagraph model allows organizing the results of the
previous structure. The fragments of the flat graph may
be organized into metavertices, metavertices may be
organized in higher-level metavertices, and so on.
Metavertex organization is more flexible than
hypersimplex organization because hypersimplex
assumes base and apex usage, and metavertex may
include general form graph.
Metavertex may represent a separate aspect of the
organization. The same fragment of a flat graph may be
included in different metavertices whether these
metavertices are used for modeling different aspects.
Thus, we can conclude that the metagraph model is more
flexible than the hypernetwork model. At the same time,
unlike the hypergraph model, the metagraph model is a
complete graph model with emergence. Therefore, we use the
metagraph model.

III. METAGRAPH KNOWLEDGE BASE

A. Emergence feature

In this section, we will look at the advantages of the
metagraph model as a data model. Knowledge-based
approaches have limitations: looping and inconsistency. It is
necessary to apply restrictions or use fuzzy inference to
overcome this problem. The metagraph allows adding attribute
weights to avoid this limitation.




Another advantage of metagraphs is the ability to
consistently describe and detail previously added knowledge
through the use of the emergence property [8, 9]. The RDF is
characterized by a flat structure of triplets (Fig. 3), which leads
to redundancy. It also loses information about emergence, that
StatementID 4 and StatementID 5 are related. Emergence
overcomes the limitations of the flat RDF model [13].

StatementID_2

object:Paul

predicate:has_author StatementlD_4

object: James

subject:John predicate:has_author

predicate:arrived_in

4
object:London

StatementlD_1

predicate:has_author

object: James

predicate:has_time

object: 4 p.m.

StatementID_3

StatementID_5

Fig. 3. The flat structure of RDF

This property also makes it possible to represent individual
elements of the system in the form of modules connected by
common data and having a more complex structure inside
(Fig. 4), combining methods of soft computing and knowledge
processing.

levell

.
[ 7! mvi \
~

A
. \ w8) /
\\,\///

Fig. 4. Different levels of knowledge representation

The metagraph model turned out to be convenient for
describing various existing artificial intelligence methods
since it allows to describe a complex network using more
homogeneous objects (metavertex) than a hypergraph
(hypergraph and hypersimplex).
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B. Concepts and objects

In [14], the authors suggested the system for the
representation and processing of knowledge obtained from the
text. The proposed representation is based on the concept of a
semantic network extended with the help of metagraphs.
Objects and classes of the real world are represented by
vertices, and the relations between them are graph arcs. In this
case, arcs can be different due to the use of metagraphs, where
metavertices and metaedges have a nested structure. It
contains abstract concepts and their special cases that
personify concrete objects of the real world. These nodes are
connected by many links that characterize the relationship
between these objects.

A concept can be expressed in a text by one word, or it can
be expressed by a sequence of words, for example, a noun
with adjectives. Characteristic features for such a concept,
which is not expressed in one word, are assumed to be a set of
words with which it is designated in the text. Both nouns and
adjectives are concepts in themselves, and the composite
concept will be connected with them by relations.

A specific object is also considered as some concept of a
specific class. An object can also have states that are more
specific cases of a given object. Thus, the properties of an
object are defined not as values of a particular type inherent in
the object but some class to which the object belongs. The
type of this property can be inferred from a more general class.
Therefore, using one type of relationship and concepts, it is
possible to determine the inheritance of concepts and
properties of objects with their values.

The intension is concepts to which the relationship is
directed from the considered, as well as parental concepts for
these concepts. In this case, the intension includes not only
generalization relations but also other types of relations that
characterize the concept under consideration and distinguish it
from the others.

The extension, in this case, is the concepts from which the
generalization relationship proceeds to the considered one, as
well as the children of them. The higher the concept is, the
bigger the extension it has and the less characteristic features
or intension it has.

C. Metagraph representation of knowledge

The metagraph representation of knowledge consists of
concepts C that are metavertices and relations R that are
metaedges. Using (2) it is written as (8). Concepts have a
hierarchical representation where one concept is a subclass of
another concept. The definition of this relationship is achieved
by a hierarchical representation of metavertices, including
several others.

Semantic =< C,R > (8)

where C is a set of metavertices for concepts, R is a set of
metaedges for relations.

All concept relationships from a set R are implemented
using metaedges (7) that has an attribute ¢ specifying the type
of relationship between concepts (9). These metaedges have a
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weight attribute that indicates the validity of a given
relationship in the conceptual model.

r=<{attr},{sem } >,r € R

(9)

where {attr} is a set of attributes of a relation, {sem } is a

fragment of a metagraph for a given relation consisting of
concepts, other relations, and connecting them edges.

A generalization type relation, consisting of one edge and
two concepts, can be written as (10).

r=<{t=g},{<c,,c,eo=true,{k} >} > (10)

c,eC,c eC
f s

where ¢ is the type of relationship, ¢ is the first concept of

relationship, ¢ is the second concept of relationship,

eo = true is the sign of the directional edge, & is the weight
of the relation.

It is necessary to perform two types of operations:
searching for concepts and adding them to the semantic
representation of knowledge. If the metavertex is not found in
the semantic graph, then it adds vertex and more general
concepts hyperonyms and also connects them with metaedges.
A hyperonym is a concept with a more general meaning,
meaning a class of concepts, and a hyponym is a particular
concept in relation to a more general one.

IV. ANALYTICAL ESTIMATION

Search for a concept in the knowledge base begins with
concepts that match certain words from the text. This process

has a logarithmic dependence of time 7, = on the number of

general concepts 7, (11).

- (concept ) =log(n (11)

If the text contains a compound concept of several words,
then a search is carried out, taking into account the
relationship from particular concepts to more general ones.
And this depends linearly on the product of the number of
general concepts in the particular ones and the number of
connections in general concepts. The maximum length of a

general )

particular concept is designated as m__, the total number of

general concepts corresponding to nouns as n_ , and the
number of general concepts corresponding to adjectives as
n,, . The maximum possible number of relations between a

general concept and specific ones is equal to the number of
other general concepts to the power of the maximum length of
the general concept minus 1. One must be subtracted, since
one of the entity’s constituents has already been found at the

with

concepts

first stage. Then the number of concepts in total n
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the maximum size of a particular concept in m__ is presented
in (12).

My =1

Mo = | | (n, —i4D-n,, (12)
i=1

The total search time for a compound concept is the sum of
the search time for the first general concept, for example, a
noun, and the time it takes to view its connections. Thus, the
search time for a concept consisting of a sequence of nouns

and adjectives #, (AdNn) can be estimated as (13) and (14)

from the total number of words in texts 7.

t,,.(AdNn) = O(log(n)) + Y O(n")

i=1

(13)

(AdNn) = O(n>™") (14)

tbn.w

If combinations of a noun phrase are considered with
another noun phrase in the genitive case, then to search for
such a concept, it is necessary to look through all the concepts

n,, connected by an association relationship with the second

noun phrase (15).

[Te,-i+)n, (15)

The search time for a concept corresponding to a noun
phrase with a genitive case #, (Gen) is equal to the search

time for one of the two components of a noun phrase and
processing all of its relations GenRI (16).

(Gen) =t

base

(AdNn) +1

base

(GenRI) (16)

tbaxe

Substituting the values for noun phrases and connections in
the genitive case, it turns into (17) and (18).

(Gen) =0 )+ O’y " n,,,)

(17)

lbase

™

(Gen) =0O(n (18)

tlm.w genConcept )

In this case, for any concept of a noun or adjective phrase,
the search time ¢_(A4dNnGen) is (19) and (20).

t, . (AdNnGen) = O(nL‘;"’l ) (19)

mm ax

(AdNnGen) = O(n ) (20)

thase

genConcept

But n"™

concept

corresponds to the maximum number of

concepts in the knowledge base obtained from the text. This
number cannot grow faster than the number of words in the
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text. Therefore, the search in the knowledge base has a linear
dependence on the size of the input text data (21).

t

e = O(1) (21)

V. EXPERIMENTS

A. Methodology

The described metagraph method of knowledge
representation was used to implement the knowledge base.
The search time of concepts was analyzed to assess the
performance of the knowledge base depending on the number
of concepts. For a concept corresponding to a single word, the
time is equal to the search for the concept itself, and for a
compound one, given by a phrase, it is necessary to find more
general concepts and then analyze their connections.

The knowledge base is filled with data from the text by an
information extraction system using natural language
processing. This information extraction system is based on
previously developed parser [14] extended with new parsing
rules and new structure of knowledge according to metagraph
model. Relations weights were not calculated during this study
and investigation of machine learning methods for that is a
part of the future research.

Results were obtained on the Open Corpora dataset
containing texts in various languages. Each text contains a
number of concepts for knowledge base and order of texts for
analysis is fixed. The measurement is carried out for 100
iterations with the same number of concepts in the knowledge
base for averaging the access time to the knowledge base.

The function of getting a collection of text documents has
been developed for this purpose. Ten iterations are performed
with an increase of 45,000 concepts at each step. The result of
the search time is analyzed depending on the size of the
concept or the number of words with which it is specified in
the text.

B. Results

The research results are presented in Table I. The number
of analyzed concepts is presented in the first column of the
table. The remaining columns show the average time of search
for concepts in the knowledge base, depending on the number
of concepts in it.

TABLE I. TIME OF CONCEPT SEARCH

Concepts Time of concept search in a knowledge base (ns)
Average 1 2 3 4 5
45000 0,33 0,17 | 1,06 | 1,59 | 1,75 | 0,00
90000 0,43 0,17 | 1,58 1 2,29 | 2,92 | 3,33
135000 0,56 0,17 | 2,33 | 329 | 3,73 | 4,44
180000 0,68 0,17 1 298 | 4,19 | 526 | 6,36
225000 0,76 0,17 | 3,40 | 4,68 | 6,03 | 7,06
270000 0,85 0,17 1 3,99 | 5,14 | 8,78 | 6,11
315000 0,97 0,18 | 4,63 | 591 | 8,65 | 6,54
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Concepts Time of concept search in a knowledge base (ns)
Average 1 2 3 4 5

360000 1,12 0,18 | 548 | 6,71 | 825 | 7,78

405000 1,37 0,18 1 6,83 | 8,66 | 9,61 | 9,69

443681 1,42 0,18 | 7,24 | 8,92 | 11,87 | 7,58

The columns indicate the time separately for each group of
concepts, consisting of 1, 2, 3, etc. words, as well as the
average search time for all these concepts. The third column of
Table 1 also allows estimating the execution time for
searching for concepts that correspond to single words.

The search time increases linearly with the growth of the
size of the knowledge base (Fig. 5). But the more words are
used to define a concept, in other words, the more it has
connections with other concepts, the longer it takes to search.
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Fig. 5. The dependency of search time for the concept

Since the study used data for concepts from real texts, the
number of concepts consisting of a larger number of words is
less in texts, and they are less common. Therefore, there is less
data for them and they are less representative. Also, for a
specific concept, general concepts with a smaller number of
links can be used, which will reduce the search time for this
specific concept. These features are noticeable in the case of
the number of words in a concept equal to 5. But for concepts
of shorter length, the dependence of the search time on the
complexity of the concept remains linear throughout the entire
volume of the knowledge base.

VI. CONCLUSION

In the paper, the authors described the metagraph
representation and implemented the knowledge base to
overcome the limitations of existing methods of representing
knowledge. The authors performed an analytical estimation of
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the time it took to search for a concept in the knowledge base,
which coincided with the experimental estimate and showed a
linear dependence. But for further improvement, it is
necessary to optimize the process of finding a concept from
linear to logarithmic dependency. Variation of a larger number
of parameters and research on other datasets are expected for
the future with the further development of the system and an
increase in the number of types of analyzed relations. Future
research plans also include more complex relationship types
for description of dynamic processes and processing time
taking into account object states and time relationships, the
estimation of the required memory for knowledge base
concepts, and exploring machine learning to find weights for
relationships.
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