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Abstract— Zero-shot learning (ZSL) is widely studied in
recent years to solve the problem of lacking annotations.
Currently, most studies on ZSL are for image classification and
object detection. But, zero-shot semantic segmentation, pixel level
classification, is still at its early stage. Therefore, this work
proposes to extend a zero-shot image classification model,
Relation Network (RN), to semantic segmentation tasks. We
modified the structure of RN based on other state-of-the-arts
semantic segmentation models (i.e. U-Net and DeepLab) and
utilizes word embeddings from Caltech-UCSD Birds 200-2011
attributes and natural language processing models (i.e. word2vec
and fastText). Because meta-learning is limited to binary tasks,
this work proposes to join multiple binary semantic segmentation
pipelines for multi-class semantic segmentation. It is proved by
experiments that RN could improve accuracy of U-Net with the
help of semantic side information on binary semantic
segmentation and it could also be applied on multi-class semantic
segmentation with simpler structure than the baseline model,
SPNet, but higher accuracy under ZSL setting. However, the
capability of RN under generalized zero-shot learning (GZSL)
setting still needs improvement. We also studied on how different
word embeddings, network structures and data affect RN and
what could be done to improve its results.

L INTRODUCTION

This paper studies on semantic segmentation tasks, which
are pixel-level classification tasks. Similar to image
classification, semantic segmentation can also be categorized
into binary tasks (i.e. classify pixels into one class or
background) and multi-class tasks (i.e. classify pixels into
multiple classes and background). To extract visual feature
maps, U-Net [1] and DeepLab-v3 [2] framework were
adopted. The former one has excellent performance in binary
semantic  segmentation tasks (e.g. medical images
segmentation) and the latter one is more popular in multi-class
segmentation tasks.

The obstacle of labelling is also studied in this paper,
especially zero-shot learning (ZSL), because it is impossible to
label everything. Currently, there are increasing studies on
few-shot learning (FSL) and ZSL, which means predicting on
classes that have been seen only a few times or never during
training. FSL tasks are denoted as k-shot c-way problems,
where k means the number of sample images from each class
and ¢ means the number of classes [3]. ZSL tasks are denoted
as 0-shot c-way problems, because ZSL does not have sample
images, which is more common in practice, such as
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recognizing objects on the street and recognizing handwriting
text in an unseen language.

In another word, the goal of ZSL is to transfer the
knowledge learnt from seen classes to unseen classes. To
achieve this goal, we import side information, which refers to
attributes and natural language processing (NLP) models.
Attributes are visual characteristics of a class or an object. For
example, in 200-2011 (CUB) [4] class attributes have
continuous value, which is “the percentage of the time
(between 0 and 100) when a human thinks that the attribute is
present for a given class [4]”. CUB image attributes are
Boolean values where 1 means “is present” and 0 means “is
not present”.

Study of zero-shot semantic segmentation is still at its
early stage. So, new tasks of zero-label semantic segmentation
(ZLSS) and general zero-label semantic segmentation
(GZLSS) are adopted. They are proposed in [5] with a baseline
model called Semantic Projection Network (SPNet). In ZLSS
it is assumed that there are only unseen classes in testing data.
For example, a segmentation model is trained on a huge
dataset of forest animals, but it will be applied on sea animals,
which does not have any annotations. GZLSS is more practical
where both seen and unseen classes could appear during
testing, e,g, the forest animal trained model will be applied on
jungle animals.

As shown in Table I, this work categorized all tasks into
binary ZLSS, multi-class ZLSS and multi-class GZLSS. Same
to ordinary binary segmentation tasks, in binary ZLSS, the
model only needs to distinguish background and the target
class in one image, and its training data and testing data has
different target classes. As binary tasks are limited to 2-way,
they do not apply to GZLSS. As for multi-class tasks, the
model segments multiple classes and background in one
image. In multi-class ZLSS, training data and testing data has
disjointed label space, whereas multi-class GZLSS have
jointed label space.

Studying on ZLSS and GZLSS, authors of [5] construct
SPNet by removing the last classifier layer of DeepLab and
appending a projection layer to it. Inspired by this, this paper
proposes to extend a meta-learning based few-shot image
classification model called Relation Network (RN) [3] to a
zero-shot semantic segmentation model. Meta-learning aims to
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TABLE I. CHARACTERISTICS OF TASKS

K-shot C-way Testing classes
Binary ZLSS K=0 C=2 Cu
Multi-class ZLSS K=0 C>=2 Cy
Multi-class GZLSS |K=0 C>=2 CLAEC:

help models learn to adapt to new classes by feeding models
random samples and random label space in every episode. In
meta-learning, the concept of epoch is substituted by the same
amount of iterations - “episodes”. A successful method of
meta-learning is to learn the best initial weights from training
data, and then fine tune models based on testing data.
However, it is also possible to train a model, which does not
require fine tuning [3].

In the following research, we aim to explore how RN could
be extended, whether it has advantages over baseline models
and how to improve its capability. Following Section II first
introduces recent state-of-the-art semantic segmentation
models, ZSL models and word embedding techniques, as well
as illustrating RN and current ZLSS models. In Section III,
highlighting research questions and methods, we show how to
extend RN and how to train extended models. Section IV
presents implementation details and experiments results, as
well as comparison of quantitative results of RN extended
models with baseline models and their qualitative results
analysis. Finally, we conclude the work and highlight future
direction.

II.  COMPUTER VISION AND ZERO-SHOT LEARNING

A. Semantic segmentation

Semantic image segmentation refers to pixel classification,
where each pixel is labelled with an object category. Recent
state-of-the-art semantic segmentation models all benefit from
convolutional neural networks (CNNs) [6],[1],[7]. With
CNNs, a basic image classification model consists of multiple
CNN layers for extracting dense features and ends with a fully
connected (FC) layer for classification. As for pixel level
classification, CNN can be applied to extract features and
classify each pixel. But, there is an accuracy and computation
dilemma: complete predictions require CNN layers to keep the
original size to contain each pixel, however faster computation
needs smaller layer size. A common solution is encoder-
decoder structure. Fully Convolutional Networks (FCN) is the
first one to utilize this structure for semantic segmentation
tasks [6]. FCN replaces last fully connected layers of pre-
trained image classification models with convolutional layers
in order to generate heat maps and then uses deconvolution
(also called upsampling) to classify each pixel. They also
propose skip connections in upsampling layers to improve
FCN’s accuracy.

Based on FCN, U-Net is designed for medical image
segmentation with more flexible network structure [1]. U-Net
has a U shape, where the left part is the encoder and the right
part is the decoder. Medical images usually are in large size,
lack of labelling and only have one target class. Therefore, U-
Net is popular in few-shot binary semantic segmentation tasks.
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Furthermore, because U-Net does not contain any pre-trained
model, it can be easily adjusted according to image size.

Furthermore, DeepLab is one of the most important
semantic segmentation models because it adopts ResNet as its
backbone and proposes atrous/dilated convolution and
pyramid pooling [7]. ResNet allows models to be deep without
reducing their accuracy. As for atrous convolution, because
neighbour pixels usually are very similar to each other, the
kernel expands its cover space with ignoring some input. By
doing this, DeepLab is able to expand the view scope of
kernels. From another point of view, it could reduce the
number of parameters and save memory usage. However,
ignoring some input causes losing contextual information. So,
pyramid pooling was introduced to solve this problem.

B. Zero-shot learning

Collecting and annotating data is expensive and time-
consuming which motivates researchers to study on few-shot
learning (FSL) and zero-shot learning (ZSL). In practice, ZSL,
where models have to recognize classes that they have never
seen during training based on seen classes, is more common
than FSL [3].

Based on attributes, researchers try to directly map from
visual space to semantic space without intermediate tasks. For
example, authors in [8] propose an approach called Attribute
Label Embedding (ALE) to use a bilinear function to measure
the compatibility between image embeddings and label
embeddings. ALE uses attributes as side information for the
label embedding and measures the “compatibility” between
the embedded inputs and outputs with a function F. During
training, image embeddings are the input, label embeddings
are the output, the goal is to optimize w to maximize the
image-label pairs’ compatibility. In this way, ALE is able to
directly predict on labels without intermediate tasks.

Then, Structured Joint Embedding (SJE) framework [9]
was developed based on ALE by replacing manually annotated
attributes with multiple side information (e.g. attributes,
hierarchical models, and text-based models). SJE includes
multiple bilinear functions F for multiple semantic information
sources. In another word, it uses multiple Wi to capture
different visual features. For more complex tasks, authors in
[10] suggest Latent Embedding Model (LatEm) where a single
bilinear function is extended to multiple linear functions to
capture diverse visual features. To directly project visual space
into semantic space, it is also possible to map both into a third
space and optimize their embeddings together. Zhang and
Saligrama [11] propose a method called semantic similarity
embedding (SSE) where both visual features and semantic
features are projected into histograms separately.

Above models all belong to metric-based approaches: learn
fixed metrics (e.g. ALE) to embed images (and labels) and
then classify images by fixed classifiers (e.g. k-nearest
neighbour). Therefore, research on metric-based approaches
usually focus on how to embed input data or how to recognize
embedded features. Additionally, generative ZSL is also a
popular direction, because it is closer to how humans think
[12]. When a human reads a description, he will have a fuzzy
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image in mind and recognize the target based on this fuzzy
image. Similarly, generative models generate synthetic
features from texts and classify query image features based on
synthetic features. However, complex models, including
generative ones, may be too memory and battery consuming,
and slow in production.

C. Word embeddings

As mentioned above, attribute is one of the popular
semantic side information ZSL [4][13]. Attributes are visual
characteristics annotated manually, such as “hooked seabird
shape” has 59.85% probability to be recognized in class “black
footed albatross”. However, because of the nature of attribute
datasets, extending them always requires human effort.

Compared with attributes, NLP models are easier to apply
to generalized tasks because they use neural networks to learn
word vectors (i.e. word representing) from free text in
unsupervised learning methods. For example, when Word2vec
[14] learns a new word, it actually learns from its neighbor
words. The other way around, word2vec could predict a word
by its neighbor words. In this way, the distance between two
words are not affected by their letters but their neighbor
words. For example, NLP models are able to learn the implicit
relationships between countries and their capital cities because
they are in similar contexts [14].

Furthermore, fastText [15] utilizes characters n-gram to
extract word vectors within the target word itself. Different
from word2vec, fastText represents a word by a set of
characters instead of words. For example, the word where with
n = 3 can be represented by character n-grams: “wh”, “whe”,
“her”, “ere”, “re” and itself “where” [15]. With character n-
gram, fastText is not limited to the training corpus, because it
could represent unseen words.

D. Relation Network

In [3] authors propose to utilize CNN to learn embeddings
for query images and semantic side information and a rather
flexible classifier. They stress that because meta-learning
keeps feeding RN random label space during training, it could

embedding module

fo

focus on learning a classifier (i.e. how to compare images and
semantic information), instead of learning features of training
data. Fig. 1 displays that RN consists of an image embedding
module and a relation module. In FSL, the image embedding
module extracts feature maps from both query images and
support images. Then the relation module computes relation
scores of each class based on the concatenations of query
features and support features. In the end, the class with the
highest relation score is the prediction class for query images.
It is claimed that RN could learn to adapt to new classes
through meta-learning, where the model is fed by different
support data in each episode. In another word, each episode
selects random label space to help RN learn metrics and a
classifier that can be shared by all classes. They also stress a
well-established meta-learning approach is to learn a set of
proper initial parameters, and then fine-tune them with new
data. But, RN does not require fine-tuning making it easier to
be applied on general tasks.

Furthermore, they state and prove RN could be easily
extended to ZSL tasks by adding a word embedding module.
Semantic feature maps are concatenated with visual feature
maps as input of the relation module (see Fig. 2). Their
experiments results demonstrate that the RN performs better
than most classical zero-shot image classification models (e.g.
SJE and SSE).

Inspired by RN, in [16] authors build a baseline model for
their few-shot segmentation dataset (i.e. FSS-1000) based on
U-Net and RN. As Fig. 3 displays, their model consists of
encoder module, relation module and decoder module.
Compared with the original U-Net, their baseline model does
not only embed query images and concatenate query feature
maps, but also support images and support feature maps. Their
proposed dataset (i.e. FSS-1000) only has binary segmentation
labels, so they only implement their baseline model on binary
semantic segmentation. However, since U-Net itself is
designed for binary semantic segmentation tasks, their
experiments cannot prove whether the RN improves their
baseline model’s accuracy.

relation module

Feature maps concatenation

Relation One-hot
score vector

9o it -

Fig. 1. RN pipeline for a 5-way 1-shot image classification problem with one query example
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Fig. 2. RN architecture for zero-shot learning [3]

E. Current zero-shot semantic segmentation

Although zero-shot semantic segmentation is still at its
carly stage, researchers have proven that this task is possible to
complete by extending current ZSL and semantic
segmentation models. For example, in [5] authors utilize the
structure of DeepLab to design a zero-shot semantic
segmentation model called SPNet. As shown in Fig. 4 they
remove the last classifier layer of a DNN (i.e. DeepLab or
FCN) as their visual-semantic embedding, where a, b is width
and height, dw is the size of word vectors. For example, the
channel size of word2vec word vectors is 300, so dw should
be 300 too. Afterwards, in semantic projection these visual-
semantic features are projected into the fixed semantic space
(i.e. fastText or word2vec) where word vectors are utilized as
weights of the projection layer. Projection layer’s output has
the same depth as label space (i.e. |S| or |U]). In the end SPNet
outputs the probability of each class for each pixel. SPNet is
similar to ALE as they both project visual space directly into
semantic space. In addition to this, authors explain the reason
why they do not use meta-learning is because it is limited to
binary tasks.

Another related model, zero-shot semantic segmentation

Encoder module

Support Set

network (ZS3Net) [12], is a generative ZSL model which
produces synthetic image features of unseen classes. However
7ZS3Net is designed for semi-supervised learning where some
labels of test instances are available during training, which
means train classes and test classes are not disjointed in
ZS3Net. Therefore, it could only be applied to GZLSS tasks.
Besides, what is worth noting is that in their experiments [12]
authors adopt a baseline model that is similar to SPNet and
ALE. In their baseline model, they replace the last classifier
layer of DeepLab-v3 with a CNN layer, which produces word
vectors. Then they calculate similarities between predicted
vectors and each class’s vectors to classify query images.

III. RN FOR ZERO-SHOT SEMANTIC SEGMENTATION

A. Problem definition and methodology

In ZSL, each episode’s input data consists of a query set
and a support set that share the same label space. In this study,

. w,h,n
the query set refers to query images Q = {(xi_ o Vi, j'k)}i,j,k=1’
where x; j ; is the pixel at coordinate 7, j of image k, y; j x is the
label of that pixel, and w, 4, n is the width, height, batch size of
images. And let denote seen classes as Cg and unseen classes as
Cy. The support set refers to semantic side information
Strain = {Ve; ¢ € Cs} where v, is attributes or word vectors of
class c. The goal of model is to predict scores 7; . of each
pixel over each class, and minimize the distance f; between
prediction scores and ground truth y; ; ; .:

(M

Because of the meta-learning setting, in each episode a
random combination of Q and S;,4;, is selected. And classes,
that are not included in S, 4y, are ignored in this episode [5].
In another word, pixels belonging to unselected classes should
not affect loss calculation and accuracy calculation.

Ty j ke € argmin Xity Z?:1 k=1 Z£=1 fa (ri,j,k,m yi,j,k,c)

In multi-class training, each query image features are
combined with each class’s semantic information as a pair. For
example, if there are k images and c classes in one episode,
this episode has k x c pairs. Fig. 5 displays an example
pipeline of one episode, where 1 query image and 5 classes are
selected.

QOutput prediction

Query set

Fig. 3. Baseline network architecture of FSS-1000, VGG-16 as Backbone [16]
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Fig. 4. An example of SPNet pipeline including visual semantic embedding and semantic projection under ZLSS setting [5]

Fig. 5. An example pipeline of one episode in multi-class tasks

Firstly, semantic and visual feature maps are concatenated
as the input of the relation module. Then the relation module
computes relation scores for each class over each pixel.
During multi-class testing, under ZLSS setting the support set
Strain = {Ve;c € C,}, but under ZLSS setting Siqin =
{v;;c € C; U Cy}. In the binary ZLSS task, training classes
and testing classes are disjointed, and each image is only
paired with its target class (i.e. £ query images result in &
pairs).

In this work, we have studied on the following questions:
how to extend RN from zero-shot image classification to
binary ZLSS, multi-class ZLSS, and multi-class GZLSS; does
RN have advantages over baseline models; and what factors
would affect the capability of RN and how could it be
improved?

For binary zero-shot semantic segmentation tasks U-Net is
set as the baseline model. Because in these tasks, similar
classes could make them be considered as few-shot tasks as
well. Moreover, U-Net is designed for few-shot binary
semantic segmentation which concatenate downsampling
feature maps with upsampling ones. Thus, we aim to
investigate if semantic side information could improve the
accuracy of U-Net.

SPNet (see Fig. 3) is set as the baseline model for
multiclass semantic segmentation tasks. The crucial part of
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Ground truth

SPNet is projecting image features into semantic space, which
is flexible in terms of label space and does not require fine-
tuning. But, using DeepLab framework makes their model
heavy to train and apply to applications, so in this work we
studied if RN could outperform it with a simpler architecture.

All models are evaluated by the average intersection over
union (mloU) (2) over classes. I; refers to the intersection area
of prediction and ground truth of class i, and U; refers to their
union area.

n L
mlol = 2200
n

@

Under GZLSS setting, the models are evaluated by mIoU of
unseen classes, mloU of seen classes, and harmonic mean (H)
of them:

_ 2xmloUseen*mloUynseen

3
mloUsegent+mloUynseen ( )
B. Network architecture

RN consists of three modules: a word embedding module
fe1(ve) for extracting semantic features from classes, an
image embedding module fy,(x; ;) for extracting visual
features from query images, and a relation module g, (f; @D

f2) for computing relation scores for each visual features and
semantic features pair. Therefore, RN predicts relation scores
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73 jk,c for each pixel over each class (see Equation 4). The goal
of RN is to learn metrics (i.e. embeddings f; and fj,) and a
classifier (i.e. relation module g,) for categorizing the
concatenation of feature maps into a class. In semantic
segmentation, besides metrics, it also learns a set of classifiers
for categorizing concatenations on pixels into classes.

Tijike = GoFp1(Ve) @ fo2(xiji)) 4

Relation module is the key point of how to extend RN
from image classification to semantic segmentation. Inspired
by U-Net and baseline model of FSS-1000 dataset [16],
relation module uses the same structure as the decoder of U-
Net. Based on this, Fig. 6 demonstrates RN architecture for the
binary ZLSS task (also called 0-shot 2-way task): word
embedding module is on the top which transforms semantic
information into proper channels for concatenation, image
embedding is on the left which is ImageNet pretrained VGG16
[11], and relation module is on the right which predicts scores

for each pixel. As it shows, the relation module consists of
upsampling and CNN layers, where feature maps from image
embedding module and word embedding module are utilized
to improve its accuracy.

Inspired by SPNet, another method is using a DNN as
image embeddings and directly classify on the concatenation
of semantic feature maps and visual feature maps by CNN
layers. Fig. 7 displays RN architecture of using DeepLab-v3
(without its last 4 classifier layers) as image embeddings,
ImageNet pretrained ResNetl01 [17] as its backbone, FC
layers as word embeddings and upsampling and CNN layers as
relation module. Moreover, the word embedding module could
be composed by FC layers or upsampling and CNN layers.
Neural networks learn feature maps from input data by
kernels. In fully connected (FC) layers, kernels have the same
size as the input, but in convolutional neural networks (CNN)
layers kernel size is smaller than input (e.g. 3 x 3). As Fig. 8
demonstrates, with

up

Word embedding module
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Fig. 6. Relation Network architecture for binary semantic segmentation tasks with pre-trained VGG16 and U-Net decoder

the same input (i.e. 5 x 5) FC kernel on the left has the same
size of input but CNN kernel on the right is 3 x 3, and each
kernel multiplies with all channels’ feature maps and sums up
its results. Therefore, when the input data size is 10 x 15 x 5 x
5, both FC and CNN layers have 5 kernels, step size is 1 and
no padding, the output of FC layer would be 10 x 5 x 5 x 5,
but the output of CNN layer would be 10 x 5 x 3 x 3,
Compared with FC, CNN focuses on a part of the input data at
a time, which is helpful in Computer Vision. For example,
when we recognize a cat from an image, what helps us are
those key features (e.g., ears and eyes), instead of the whole
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image. Therefore, using a smaller kernel helps models to learn
more useful feature maps.

With FC layers its input is 2-dimensional data (i.e. batch
size x channel size). FC layers transform the channel size of
semantic feature maps (e.g. from 300 to 512), so semantic
feature maps need to be repeated in width and height before
concatenation.

With CNN layers, its input is 4-dimensional data (i.e. batch
size x channel size x width X height) which can be upsampled
and transformed to the proper size. Using FC layers is closer
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to the original concept of RN where each pixel is concatenated
with the same semantic feature maps and makes model size
smaller in this case. But, the other one may provide more
context information for semantic segmentation models. In the
end, the relation module uses sigmoid at its last layer to
restrict relation scores between 0 and 1 representing the
probability of this pixel belonging to the target class. In the
binary ZLSS task, if a score is higher than or equal to 0.5, this
pixel is predicted as target class, otherwise it is predicted as
background. In C-way 0-shot semantic segmentation tasks, as
shown in Fig. 9, RN predicts relation scores for each word-
image pair and compares relation scores among classes. Then
for each pixel the class with the highest relation score is its
prediction class. With this network architecture, a multi-class

segmentation task is essentially a series of binary
segmentation tasks.
Word embedding module r = = 3 fully connected

256

- 64 ) concatenate
:l:lr:::{. CaOr==30

——pconv3x3

Image embedding module
256

224 x 224 ﬂ

224 x 224

Relation medule

224 x 224

Fig. 7. Relation Network architecture for binary semantic segmentation tasks
with DeepLab-v3 removing its last 4 classifier layers

Fig. 8. Comparison of FC kernel (left) and CNN kernel (right)
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Fig. 9. C-way 0-shot semantic segmentation pipeline

C. Loss function

In both binary segmentation training and multiclass
segmentation training, binary cross entropy (BCE) loss (5) is
adopted for backpropagation, where 7; ; . is the relation score
of a pixel over class ¢ and y; ;. is the ground truth of it. If
this pixel belongs to class c, its ground truth is 1, otherwise it
is 0. Mean square error (MSE) could also be used here but
does not make much difference. As for categorical cross
entropy, experiments show that convergence speed is not as
fast as BCE.

IV. EXPERIMENTS

A. Datasets and splits

In [3] authors used Animals with Attributes (AwA2) [13]
and CUB for zero-shot image classification. They both provide
attributes information which could be input of the word
embedding module. However, AwA2 does not have
segmentation labels. Whereas, besides 200 bird species and
corresponding 312 numeric attributes values, CUB also
provides rough segmentation labels for each image. And
PASCAL VOC 2012 [18] and COCO-Stuff are also popular
semantic segmentation datasets [5][12]. PASCAL contains
2913 images with segmentation annotations, covering 20
classes and 1 background class. COCO has 123K annotated
images, including 182 classes and 1 background class.

In this work, experiments are made on CUB, PASCAL and
COCO. The train/test split of CUB is provided by [3] from
their GitHub repository: 150 seen classes and 50 unseen
classes. Because there is only one target class in each image,
its class split is the same as its image split and this dataset can
be utilized in both binary segmentation and multiclass
segmentation. As for PASCAL and COCO, we directly adopt
the class train/test splits proposed by [5]: split classes based on
whether they are included in ImageNet 1K because the pre-
trained models are trained on it. In PASCAL the last 5 classes
are unseen classes (i.e., potted plant, sheep, sofa, train and
tv/monitor) and the rest 15 ones are seen classes. In COCO 15
classes are unseen classes (i.e. cow, giraffe, suitcase, frisbee,
skateboard, carrot, scissors, cardboard, clouds, grass, playing
field, river, road, tree and wall-concrete) and the rest 167 are
seen classes. The train/test splits from PASCALand COCO are
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directly used as the image split. Unseen classes are ignored in
loss function during training, seen classes are ignored in
accuracy calculation under ZLSS setting, and no class is
ignored in accuracy calculation under GZLSS setting.

As for word embeddings, all datasets could be trained with
NLP models (i.e., word2vec and fastText). Following choices
of [5], our experiments use Google News [19] pre-trained
word2vec model, Common Crawl [20] pre-trained fastText
model and their concatenation. When a class has multiple
words, their word vectors are summed.

B. Implementation details

Experiments are implemented with PyTorch [21]. Pre-
trained models and DeepLab-v3 framework are imported from
PyTorch sub-package “models”. The U-Net based model uses
VGG16 as its image embeddings module and DeepLab-v3
uses ResNet101 as its backbone. Both VGG16 and ResNet101
are pre-trained on ImageNet 1K.

For pre-processing the data, all the input images, which are
in JPG format, are resized to size (224,224) and normalized
with mean value [0.485, 0.456, 0.406] and std value [0.229,

W, Ty ke © argmin L, ¥y

1) Effect of word embeddings

Compared with U-Net, combination of U-Net and RN has
higher mloU over classes, as demonstrated in Table II. Among
four different word embeddings, the model with CUB
attributes has the best accuracy, which achieves 81.18% on
unseen classes and 81.84% on seen classes. But, the accuracy
difference between the attributes-based model and other three
is smaller than 3%, so this may be not enough to imply that in
semantic segmentation tasks, human annotated visual side
information is more helpful than NLP models. Besides,
different from experiments of [5], concatenation of word2vec
and fastText does not have obvious advantages compared with
other word embeddings.

2) Effect of network structure

When use FC layers in the word-embedding module,
semantic feature map size is always channels x 1 x 1, and
then they are repeated to the same width and height as the
visual features. When used CNN layers, word embeddings are
upsampled and then transformed by CNN layers with 3 x 3
size kernels. As Table III displays, after training two U-Net
based RN models with the same semantic information (i.e.
CUB attributes), the one using FC layers performs slightly
better than the one uses CNN layers. Besides, using FC layers
decreases model size, because its kernel size is onlyl X 1.
Therefore, following experiments all adopt FC layers in their
word embeddings. It is obvious that the U-Net framework
performs better than DeepLab in this binary task. Table IV
shows that the U-Net based model outperforms DeepLab
based model in all criteria (both models are trained and
evaluated with CUB images and CUB attributes).

D. Multi-class semantic segmentation

In multi-class training, the total episode number is 50,000
for PASCAL, 100,000 for COCO. The initial learning rate is

S X w(= yijkelog(ijne) — (1= Vijre) 1081 —Tijxe))
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0.224, 0.225] to be aligned with ImageNet pre-trained models
implemented by PyTorch team. All the labels, which are in
PNG format, are converted to classes index. Specifically, each
pixel in binary segmentation labels (i.e. CUB labels) are
converted to 0 as background or 1 as target classes. As for
multi-class segmentation labels (i.e. PASCAL and COCO-
Stuff) 0 indicates background, -1 indicates difficult or
ambiguous pixels, positive numbers represent classes.
PASCAL annotations are represented by 22 different colors,
and during preprocessing, they are converted to numbers from
-1 to 20. COCO annotations are indexed images where 0-181
refers to classes and 255 refers to background (COCO do not
annotate difficult pixels). Besides, it is worth noting that
annotation images are resized by OpenCV [22] with
“INTER NEAREST” parameter to avoid generating new
pixels.

C. Binary semantic segmentation

While training each model, the total episode number is
50,000, batch size is 32, learning rate is 1e-6 and is reduced by
50% every 5,000 episodes, and Adam is chosen as optimizer.

®)

le-4 and is reduced by 50% every 10,000 episodes, and
optimizer is Adam. The batch size for U-Net based models is
32, but for DeepLab based models is 8 because of the limit of
random access memory (RAM) (i.e. 16 GB). After trying
using checkpoints and adjusting activation functions’
parameters to reduce memory usage, we still had to reduce its
batch size. In each episode, 10 classes are randomly selected
from all classes, and then unseen classes are excluded from the
label space. Because COCO has many more classes (i.e. 182
classes), to speed its converging speed, labels are randomly
selected within the label space of each episode. When
calculating the loss, unselected classes are ignored (i.e.
unselected seen classes and all unseen classes). During testing,
under ZLSS setting label space is unseen classes (i.e. 5 classes
in PASCAL and 15 classes in COCO) and under GZLSS
setting label space is both seen and unseen classes.

1) Effect of word embeddings

As Table V and Table VI show, three kinds of word vectors
are adopted to study the effect of word embeddings on
PASCAL. With U-Net based models, similar experiment
results as authors in [5] are collected: the concatenation of
word2vec and fastText has the best performance among them.
However, the concatenated vectors have poor performance
with the DeepLab based model.

TABLE II. EFFECT OF WORD EMBEDDINGS: MIOU OF BINARY SEMANTIC
SEGMENTATION ON CUB WITH U-NET BASED MODEL

unseen class mIoU (%) | seen class mloU (%) | H (%)
No word embeddings | 74.69 7441 74.55
CUB attributes 81.18 81.84 81.51
word2vec 78.69 78.82 78.75
fastText 79.79 7992 79.86
word2vec + fastText | 78.51 78.69 78.60




TABLE III. EFFECT OF WORD EMBEDDINGS MODULE STRUCTURE: MIOU OF
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BINARY SEMANTIC SEGMENTATION ON CUB AND ITS ATTRIBUTES WITH U-NET
BASED MODELS

unseen class mloU (%) | seen class mloU (%) H (%)
FC layers 81.18 81.84 81.51
CNN layers 78.12 78.79 78.45

TABLE IV. EFFECT OF NETWORK STRUCTURE: IOU OF BINARY SEMANTIC
SEGMENTATION ON CUB AND CUB ATTRIBUTES WITH U-NET BASED

MODEL
unseen class mloU (%) | seen class mloU (%) H (%)
U-Net_VGG16 81.18 81.84 81.51
DeepLab_Resnetl01 | 72.85 7417 73.51

Moreover, although label space is randomly chosen during
training, their loss is still able to decrease to le-7 and the best
ZLSS mloU is reached within the first 15,000 episodes.
Furthermore, in GLZSS the mloU over seen classes is much
higher than the mloU over unseen classes. These indicate
models are able to converge with seen classes, but is
overfitting on PASCAL, causing poor performance with
unseen classes. Besides, the model with concatenated vectors
ends with higher loss than the other two, which indicates its
overfitting is less serious (see Table V). One reason for
overfitting is that training data is not diverse enough because
there are only 20 classes in PASCAL.

2) Effect of network structure

Although DeepLab has a more complex structure, it does
not always have better results than U-Net in this case. By
comparing Table V and Table VI, it is observed that DeepLab
based models are more difficult to converge, which indicates
its overfitting problem as less serious than U-Net based
models. The first model (i.e. the one uses word2vec) in Table
V does not have the highest ZLSS mloU, but it reaches the
best harmonic mean among above two tables. However, the
other two DeepLab based models have rather poor
performance, so it is hard to say whether DeepLab has better
capability on multi-class tasks.

1) Effect of data

As there are only 20 classes in PASCAL, the label spaces
are highly overlapped among episodes. However, meta
learning aims to feed random and various classes to the model
to make it adapt to new classes. As mentioned above, RN is
overfitting on PASCAL, so to investigate whether more
diverse training data could boost its performance, RN is also
trained and evaluated on COCO. With word2vec as semantic
side information, VGG16 as image embedding module, U-Net
as relation module, RN is able to reach 37.37% of ZLSS
mloU, 6.42% of GZLSS harmonic mean (3.80% over unseen
classes and 20.55% over seen classes). Furthermore, models
trained on these two datasets are cross evaluated on each other.
As shown in Table VII, COCO trained model surpasses
PASCAL trained model in ZLSS of both datasets.

Meanwhile, size of objects could also affect prediction
scores. Below figures (see Fig. 10 and Fig. 11) demonstrate
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the relationship between IoU and average object size of unseen
classes from PASCAL and COCO under ZLSS setting. For
PASCAL classes and most COCO classes, it is obvious that
IoU has a significantly positive correlation with object
size.

TABLE V. EFFECT OF WORD EMBEDDINGS: MIOU OF MULTI-CLASS
SEMANTIC SEGMENTATION ON PASCAL WITH U-NET AND VGG16 BASED

MODELS
ZLSS mloU | GZLSS GZLSS seen | GZLSS  H | Lowest loss
(%) unseen mloU | mloU (%) (%)
(%)
word2vec | 40.09 10.87 51.03 1792 le-7
fastText 41.84 15.75 52.56 2423 le-7
w2v+ft 4893 16.09 5049 24 40 le-4

TABLE VI. EFFECT OF WORD EMBEDDINGS: MIOU OF MULTI-CLASS
SEMANTIC SEGMENTATION ON PASCAL WITH DEEPLAB AND RESNET101
BASED MODELS

ZLSS mloU | GZLSS GZLSS seen | GZLSS  H | Lowest loss
(%) unseen mloU | mloU (%) (%)
(%)
word2vec | 41.38 17.13 67.80 27.35 le-3
fastText 4002 76 58.66 1345 le-3
w2v+ft 36.18 527 39.14 929 le-3

E. Compare with baseline models

In binary ZLSS, compared with the baseline model U-Net,
RN is able to improve the accuracy with the help of semantic
side information. But in multi-class tasks, accuracy of RN
depends on how diverse training data is, as shown in Table
VIII and Table IX where their best results are picked up for
comparison. In both tables, SPNet adopts concatenation of
word2vec and fastText as its word embeddings and DeepLab
as its framework. But RN uses VGG16 and U-Net as its image
embedding module and relation module separately. In Table
VIII RN uses concatenation of word2vec and fastText as well,
but in Table IX it uses word2vec only.

When RN is trained on PASCAL, its ZLSS mloU is close
to SPNet but its GZLSS accuracy is much better than SPNet.
And as expected, a bigger dataset (i.e. COCO-Stuff) could
boost performance of RN with meta-learning. After only
50,000 episodes, RN achieves higher mloU than SPNet in both
ZLSS and GZLSS tasks on COCO. But its loss (i.e. Se-2) is
still big and its mloU on seen classes (i.e. 20.07%) is rather
low, compared with other experiments, implying it is
underfitting.

However, work done in [5] is able to increase the GZLSS
accuracy of SPNet dramatically by reducing its prediction
scores on seen classes (i.e. calibration). After calibrating,
SPNet-C could maintain its mloU on seen classes and increase
its mloU on unseen classes. On the other hand, although
calibrating RN could improve its unseen mloU a little, it
would decrease seen mloU dramatically, resulting in lower
harmonic mean.
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Fig. 10. Relationship between IoU and average object size of unseen classes in
PASCAL under ZLSS setting
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Fig. 11. Relationship between IoU and average object size of unseen classes in
COCO under ZLSS setting

TABLE VII. PASCAL AND COCO TRAINED U-NET BASED MODELS WITH
WORD2VEC AND VGG16 CROSS EVALUATED ON EACH OTHER’S TESTING DATA

ZLSS mloU (%)

PASCAL-evaluated

COCO-evaluated

PASCAL-trained

40.09

5.09

COCO-trained

78.69

37.37

TABLE VIII. COMPARISON OF MIOU BETWEEN SPNET ON PASCAL.

(SPNET DATA IS FROM [5]

ZLSS  mloU | GZLSS unseen | GZLSS  seen | GZLSS H (%)
(%) mloU (%) mloU (%)

RN 4893 16.09 50.49 2440

SPNet 49.50 0.01 75.51 0.02

SPNet-C 29.33 76.84 4245

TABLE IX. COMPARISON OF MIOU BETWEEN SPNET ON COCO. (SPNET
DATA IS FROM [5]

According to mloU (see Table II), the effect of different
word embeddings is small. But in Fig. 12, it is obvious that
attributes boost the model’s accuracy and fastText performs
better than word2vec. This is because in Fig. 12 prediction
scores (i.e. from O to 1) are directly shown in images, but in
Table II prediction scores are converted to prediction labels
(i.e. 0 or 1) to calculate the mIoU.

Fig. 13 displays the segmentation results on PASCAL
predicted by different RNs. The first three models from the left
are trained on PASCAL with the same U-Net structure but
different word embeddings. The fourth one adopts DeepLab
structure and word2vec embeddings. The last one has the same
setting as the first model, but is trained on COCO. Different
from the above binary task, each predicted pixel in Fig. 13 is
converted to RGB format by PASCAL palette. Because in
ZLSS the search scope is unseen classes, all seen classes are
represented by black color as the background. And ZLSS
results on COCO are shown in Fig. 14 made by a U-Net based
model with wor2vec embeddings. Seen classes are drawn in
black, but unseen classes are represented directly by their class
indexes. At each row, expected classes are listed on the left.

As analyzed in the previous Section, big objects (e.g. trains
and sofas) are easier to be recognized than small objects.
Additionally, the poor recognition of monitors may be caused
by their colorful screens which is misleading when the data is
not diverse enough. Although the COCO trained model could
segment monitors well, it still has difficulty on sheep and glass
(see the glass part of trains in Fig. 13).

V. CONCLUSION

In this work authors prove that it is feasible to extend RN
from zero-shot image classification tasks to ZLSS and GZLSS
tasks. Because semantic feature maps of each class are
concatenated with visual feature maps separately, RN is
limited to binary semantic segmentation. However, this work
manages

ground truth unet+attribute unetrw2y unetst unet+w2veft

fo020002020>

unet

ZLSS  mloU | GZLSS unseen | GZLSS  seen | GZLSS H (%)
(%) mloU (%) mloU (%)
RN 37.37 380 20.55 642
SPNet 35.20 0.20 34.05 033
SPNet-C 833 34.52 1342
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Fig. 12. Qualitative results on CUB unseen classes by U-Net based models
with no-vector, attributes, word2vec, fastText and the concatenation of
word2vec and fastText
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Fig. 13. Qualitative results on PASCAL unseen classes under ZLSS setting by
RN
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Fig. 14. Qualitative results on COCO unseen classes under ZLSS setting by U-
Net based model with word2vec.
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to do multi-class semantic segmentation tasks by joining
multiple binary semantic segmentation pipelines. U-Net and
SPNet frameworks are referred to in network structure
designing. ImageNet pre-trained DNNs (i.e. VGGI16,
ResNet101 and DeepLab-v3) are adopted in image embedding
module, attributes and NLP models are utilized as word
embeddings.

In the binary ZLSS task on CUB, although there is only one
object in each image and classes are similar to each other, RN
could improve semantic segmentation accuracy with the help
of semantic information. In multi-class tasks, the effect of data
is obvious. Because RN is trained by meta-learning, more
diverse training data could boost its accuracy. As above
experiments shown, in ZLSS tasks, RN has a close mloU as
SPNet on PASCAL, but outperforms it on COCO. However,
under GZLSS setting, although RN has obviously higher
harmonic mean than SPNet, SPNet can effectively improve its
accuracy by calibrating, whereas calibrating does not help RN.
The poor performance in GZLSS tasks may be caused by U-
Net structure, as U-Net was originally designed for binary
segmentation tasks and may not be suitable for multi-class
ones. Moreover, DeepLab could achieve better harmonic mean
than U-Net but has a bigger model size and needs more time to
train.

In terms of practical application, U-Net based RN has a
smaller model size and a simpler architecture than SPNet and
could maintain a similar ZLSS mloU. However, as the number
of classes grows in GZLSS tasks, U-Net based models have
rather low mloU. DeepLab based models may have better
results in multi-class tasks but costs more RAM usage.

In experiments, the effect of different settings is also
studied for optimizing the capability of RN. In binary
segmentation, although attributes are more helpful than NLP
models, they are more expensive to extend and apply on real
problems. Overall, NLP models have unstable performance in
experiments, so it is hard to conclude which one is the best in
this case. While choosing between U-Net and DeepLab, the
former one has an advantage when the search space is small.

Nevertheless, while designing network structure, authors
simply remove the last 4 classifier layers of DeepLab and
appended upsampling and CNN layers to it. There may be
other options on how to utilize the DeepLab framework.
Moreover, different semantic side information (e.g.
Ontologies) could also be utilized to improve their accuracy.
Authors consider further investigation of DeepLab based
models capability and more diverse semantic information as
potential future work. And it is worth noting because of
limited GPU RAM, DeepLab based models were trained with
batch size = 8, which would influence convergence.
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