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Abstract—Wheat stem rust, a highly destructive wheat disease 
caused by the fungal pathogen Puccinia graminis f. sp. tritici, has 
been considered for years to be almost eradicated in Western 
Europe. However, changes in climatic conditions and appearance 
of new races, overcoming the previously developed wheat 
resistances, are fostering its re-emergence. Several outbreaks 
have already been documented in Europe. The consequences on 
upcoming wheat productions, due to wind-borne spore dispersal, 
may be destructive. In this work we present a weather-based 
infection model for wheat stem rust, developed using laboratory 
and field data from literature. A warning system, based on the 
simulation of stem rust infectivity, was also developed to improve 
field monitoring and help farmers maximize crop protection 
strategy efficiency. A preliminary validation was performed on 
actual data not used in model building and pertaining to a wide 
range of conditions (wheat crops in northern Italy between 2016 
and 2020). Satisfactory agreements between simulated and actual 
data were found.  

I. INTRODUCTION 
Wheat stem rust also known as black rust (Puccinia 

graminis f. sp. tritici Erikss. & Henn.) is a devastating fungal 
disease afflicting wheat leaves and stems [1]. In most serious 
cases this fungus, causing the presence of black pustules, may 
even penetrate in the plant upper side, on the ears [2]. This 
disease has been considered widely eradicated, until an alarm 
was raised in 2016 [3]. In Sicily there was a heavy outbreak of 
black rust, causing an extensive damage to production and 
marking the biggest European outbreak since the 1950s [4]. 
The relatively small size of stem rust uredospore makes the 
propagation through atmospheric condition the major vector of 
disease spread, even crossing oceans [5]. This has suggested a 
stem rust re-emergence in Europe, the world’s biggest wheat 
producer, with severe impact for production [6] and, 
consequently, for food sustainability [5].  

The new spread of this disease, caused by extremely 
virulent strains [6], [7], and the warmer climate favoring it [8] 
have led to a renewed interest for the development of strategies 
to prevent it. Despite calendar spraying still represents an 
effective strategy, from an economic point of view only a 
necessary and prompt fungicide application, at most one, is 
feasible to protect wheat from foliar diseases [9]. Therefore, for 
a more effective and sustainable agricultural management, it is 
crucial to access timely and detailed information useful to 
support the decision-making process. 

In the era of precision agriculture, the so-called decision 
support systems (DSS) are emerging to face agricultural 

challenges, contributing to the development of more efficient 
and environmentally sustainable strategies [10]. In this context, 
information and communication technology (ICT) can 
contribute significantly [10]. Systems usually based on weather 
and disease-inducing conditions, empirical relationships and 
regression equations have already been developed for other 
common wheat diseases [11], [12], [13], [14]. For instance, 
authors in [14] developed a model to assess the development of 
Septoria leaf blotch, a foliar disease caused by Zymoseptoria 
tritici. According to this model, an infection can occur when 
precipitation of at least a couple of consecutive hours (> 0.1 
mm for the first hour, > 0.5 mm for the second one) is followed 
by 16 hours with relative humidity higher than 60% and 24 
hours characterized by temperatures above 4°C. The 
relationship between pathogen development and 
meteorological conditions (as precipitation, temperature, 
relative humidity, leaf wetness and solar radiation) usually 
represents the basis for forecast model building. Pathogen 
inoculum spread is considered less frequently [15].  

In this work, we present a dynamic simulation model for 
stem rust infection on wheat, founded on the effect of weather 
condition on rust uredospore cycles (spore germination, 
appressoria formation, host entry by penetration). A warning 
system, based on the simulation of the infection risk, was also 
developed to guide field monitoring and support producers in 
the decision of the best pest management. A preliminary 
validation was performed on actual data including a wide range 
of conditions. Data not used in model building and pertaining 
to wheat crops in Ravenna, northern Italy, between 2016 and 
2020 were considered. Experimental results proved a strong 
correlation between simulated and actual data, this suggesting a 
promising application in sustainable agriculture of this DSS. 
 

 II. MATERIAL AND METHODS 

A. Model description 
Uredospore infection by the fungal pathogen Puccinia 

graminis f. sp. tritici is considered a biphasic process (Fig. 1) 
[16]. The first phase includes:  

 spore germination, involving the growth of germ tubes, 
perpendicular to leaf veins, until the stomata (the pores 
present on the epidermis of the leaves) are reached [16], 
[17];  

 formation of the appressorium, the first infection 
structure produced over the stomatal aperture [18], [19]. 
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Fig. 1. Biphasic stem rust infection process, outlining the main infection 
structures formed during its development: germ tube, appressorium, 
penetration peg passing through the stomata, and haustorium, finally infecting 
the host cell. 

Both processes require the presence of free water on the leaves 
and darkness [1], [20], since light causes the inhibition of 
uredospores germination and appressoria formation [21].  

The second phase regards the penetration of the fungal 
pathogen into the leaf tissue, performed through a short peg 
pushing into the stomal opening [20]. To result in a successful 
fungal penetration causing latent infections, this mechanism 
requires the presence of light and wet on leaf surface [18], 
directly stimulating the fungus [22] and the leaf stomata 
opening [16]. Therefore, the first phase usually occurs during 
the night, after sunset, while the second phase, needing the 
light, generally occurs in the early morning, after sunrise.  

The effect of temperatures and dew periods in the 
development of the stem rust disease has been widely studied 
in literature, usually performing laboratory tests. For the first 
phase, evidence shows that uredospores reached at least 98% 
of germination within 2 hours at all temperature ranging from 
6 to 28 °C [23]. Author in [1] found that spore germination 
occurs at 4 – 29 °C, with an optimum close to 15 – 23 °C. A 
similar result for germination was also found in [18], reporting 
a range of 2 – 30 °C with optimum temperatures of 15 - 24 °C. 
While as regards appressorium formation, slightly higher 
temperatures are needed with an optimum reached at 16 - 
27°C, still in dark condition [18].  

As for the second phase, appressoria produce penetration 
structures if temperatures are higher than the first phase [1]. 
The range is from 15 to 35 °C [18], with optimum 
temperatures varying from 29 to 30 °C [1], [18], [20]. 
Contrary to the first phase, the second phase occurs in the 
presence of light [1], [18], [20]. Author in [20] reported that 
the formation of fungal infectious structures occurs within 1.5 
hours of light exposure.  

For the success of the whole infectious process including 
the two phases, the duration of surface wetness is decisive. 
Indeed, under laboratory conditions, maximum infections are 
obtained with a leaf wetness lasting 8 – 12 hours at a 
temperature of 18 °C [18]. Instead, in field conditions, a dew 
period or free moisture from rains of 6 – 8 hours resulted 
adequate for the completion of an infection process [18], [24].  

The model devised is built on the correlations between 
infection processes and weather data previously reported 

(Table I). It is based on temperature, precipitation and leaf 
wetness, with the following rationale: in order to establish an 
infection, fungal mechanisms require the presence of leaf 
wetness at defined temperatures and light exposures.  

TABLE I. LIST OF INPUT PARAMETERS USED IN THE MODEL 

Acronym Parameter Unit/Description 
TMP Hourly temperature °C 
P Hourly precipitation mm 
LW Hourly leaf wetness 0 (dry) or 1 (wet) 
DATE Date of the current day dd-mmm-yyyy 

UTCoff Time zone, local time offset to UTC 
(Coordinated Universal Time) h 

LAT Latitude DD  
(decimal degrees) 

LONG Longitude DD  
(decimal degrees) 

 

As reported in [1], the success of an infection (number of 
pustules) increases linearly with the duration (hours) of leaf 
wetness at optimum temperatures. In order to consider the 
effect of suboptimal temperatures on the two fungal infection 
phases, two different temperature response functions, Rate1 
and Rate2, were devised. As regards the first phase, the 
relation between spore germination with appressorium 
formation and temperatures has been approximated by a 3-
segment function, as reported in solid blue line in Fig. 2, using 
the cardinal temperatures reported in [18]. Analogously, the 
relation between peg penetration and temperatures has been 
modelled by a 3-segment function, as reported in dash-dot red 
line in Fig. 2, using the cardinal temperatures taken from [18], 
[20]. 

 

Fig. 2. Effect of mean hourly temperature on first (Rate1) and second (Rate2) 
phase fungal process. Cardinal temperatures for the two phases are from [18, 
20]. 

As predictive variables we considered the temperature-
weighted wet periods pertaining to the first (LWT1st_phase) and 
second phase (LWT2nd_phase), being both essential to cause 
latent infections. More specifically, for the first phase only 
overnight wet periods characterized by consecutive moisture 
hours were considered. That is, LWT1st_phase is computed only 
if, after sunset and just before sunrise, a wet period without 
interruption in wetness occurred. In the absence of consecutive 
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wet hours LWT1st_phase is assigned to 0. Formally, on current 
day i, LWT1st_phase(i) is calculated on the hours h composing the
first phase wet period, as in (1):

where LW(h) and TMP(h) are the leaf wetness and temperature 
detected in the hour h. LW(h) = 1 stands for presence of 
wetness, while LW(h) = 0 for its absence. Rate1(TMP(h))
represents the adjusting factors taking into account the effect 
of suboptimal temperatures on the first phase.

Regarding the second phase, only 2 hours after sunrise 
have been considered, resulting adequate for plants to become 
infected [1]. The great correlation between infection and 
period of 2 hours after sunrise was also confirmed in [25],
where 2 hours resulted equally or more highly correlated with 
infections than shorter or longer periods after sunrise.
Therefore, on day i, LWT2nd_phase(i) is calculated on the 2 hours
h after sunrise, as in (2):

where LW(h) and TMP(h) are the leaf wetness and temperature
detected in the hour h. Rate2(TMP(h)) represents the adjusting 
factors considering the effect of suboptimal temperatures on 
the second phase. Therefore, in the absence of leaf wetness 
(LW = 0), during both the hours considered for the second
period, LWT2nd_phase(i) results to be equal to 0.

Sunset and sunrise times were calculated through the
equations in [26], using as input the date of the current day,
the local time offset, the latitude and longitude of the field 
under monitoring (Table I). The algorithm was implemented in 
Matlab (MathWorks, Natick, MA, USA).

B. Infection efficiency

As already stated, both fungal processes are required for the 
success of an infection. Therefore, as performed in [25] for the
stem rust model of perennial ryegrass, the infection likelihood,
INF_prod(i), was modelled as the product of the first and 
second phase favorability. Therefore, for each day i,
INF_prod(i) is calculated as in (3):

INF_prod(i) results to be different from 0 only in the presence 
of the two morning/night wet periods at appropriate
temperatures, necessary to trigger a stem rust infection.

In order to provide a more intelligible index for end-users,
the relative infection index INF (%) was also devised. INF
represents the INF_prod variable normalized by the minimum 
value (INF_norm) that, based on literature data, is proved to 

cause successful infection events. As already stated, the
greater the number of wet hours at optimum temperatures, the 
greater will be the likelihood of infection [1] and also the 
infection efficiency [23]. It is worth noting that a greater 
infectious efficiency corresponds to a greater number of spores 
that complete the infectious process and, consequently, cause 
high disease pressure (epidemic). Therefore, we assume that
INF_prod values greater than INF_norm are associated with 
effective infection events (INF = 100%), while lower values
point out less probable infection events. INF_norm was 
calculated using Equation (3), by considering 7 wet hours (4
for spore germination, 2 for appressorium formation and 1 for 
peg penetration) at each minimum optimum temperature [18],
[24]: INF_norm = (15 ∙ 4 + 16 ∙ 2) ∙ (29 ∙ 1) = 2668. Thus, for 
each day i, the relative infection index INF (%) is calculated as 
in (4):

Therefore, in a precautionary way, INF values greater than 
75% can be reasonably associated with highly probable and
efficient infection events. Instead, values between 50 and 75% 
report less probable infections. However, still in a
precautionary perspective, they also indicate a situation to be 
monitored. Indeed, as previously discussed, even few wet
hours, at least two, could be able to trigger successful
infections albeit with a lower infectious efficiency [1]. Finally,
INF values below 50% represent unlikely infections.

This information will be accessible by users in different 
ways, always enclosing a representative color:

red for highly probable infection (INF ≥ 75%)
yellow for less likely infections (50% < INF < 75%)
green for unlikely infections (INF ≤ 50%)

This should help farmers in the interpretation of system 
outputs. Indeed, the devised system provides an easily 
interpretable graphical widget, a plot representing INF data, 
and a table reporting this value along with the date of infection.
In particular, as regards the widget, this information is 
displayed through a thermometer divided into three parts and
enhancing the correct color, as one can see in Fig. 3, where a
highly probable infection is suggested.

Fig. 3. Stem rust model output, enhancing high (red), medium (yellow) and 
low infection risk. In this example, a high-risk infection is suggested.

LWT1st_phase(i) = ∑h LW(h) · TMP(h) · Rate1(TMP(h)) (1)

LWT2nd_phase(i) = ∑h LW(h) · TMP(h) · Rate2(TMP(h)) (2)

INF_prod(i) = LWT1st_phase(i) · LWT2nd_phase(i) (3)

INF(i) = (INF_prod(i) / INF_norm) ∙ 100 (4)
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C. Latent period
The latent period is the time elapsed between the beginning of 

the infectious process, caused by a unit of inoculum, and the start 
of production of infectious units, that is the eruption of
sporulating pustules [27].

The three-parameter logistic model developed by authors in
[28] to predict latent period duration of wheat stem rust has been 
implemented. The model is based on hourly temperatures,
considering a minimum temperature of 1.8 °C and a maximum 
temperature of 30.9 °C. Optimum temperatures for latent period,
fostering short intervals, range from 24°C to 29°C. Indeed, at 29
°C latency duration was 128 hours [28].

Generally, at the end of the latent period the infection become 
visible on leaves and stems as rusted areas, as reported in Fig. 4.
For infections occurring when plants are already in senescence 
the symptoms could not appear. For instance, infections 
occurring late close to wheat harvesting, carried out on totally 
dry senescent plants (i.e., dead and collapsing plants), may be 
visually undetectable. This because stem rust pathogen needs 
living green tissue for its life cycle and to cause visible
infections.

Fig. 4. Stem rust symptoms on wheat.

The latency period is computed only when INF ≥ 50%, thus in 
the presence of probable and potentially effective infectious 
events. As a result, the date of probable symptoms appearance is 
provided in a table along with the INF value and the date of 
infection.

D. Model validation

The model was preliminary tested on four independent
datasets, different from the data used for model development.

As reported in Table II, the datasets pertain to two different 
locations in Ravenna (RA), northern Italy, over four years,
from 2016 to 2020.

Field weather conditions were monitored every year with a 
wireless weather station (Vantage Pro2 plus 6162; Davis 
Instruments Corporation, California, USA). Air temperature
and humidity at 1m above canopy height were measured with
temperature and humidity sensors contained in a passive solar 
radiation shield (Temperature/Humidity Sensors 6830, Davis 
Instruments Corporation). Precipitations were measured at 1.5 
m above the ground with a pluviometer (rain collector with 
flat base 07852, Davis Instruments Corporation).

Leaf wetness duration was measured with an electrical-
resistance sensor working as an artificial-leaf (Leaf Wetness 
Sensor 6420, Davis Instruments Corporation). This sensor is
composed of a sensing grid, a low-voltage bi-polar excitation 
circuit, and a conductivity-sensing circuit allowing the 
detection of surface moisture. Leaf wetness sensor is mounted 
at an angle of 45° to simulate a typical leaf position and to 
permit runoff of excessive moisture. It is maintained 
approximately 5 cm below the top of the canopy. When 
moisture is present, the sensor detects an electrical resistance 
change, then reported as a value between 0, completely dry,
and 15, totally wet.

Meteorological data were recorded every 10 minutes and 
averaged over the hour. For each time interval (1 hour), leaf 
wetness duration was transformed into binary data (0 - 1)
reflecting wet and not wet conditions. In details, an interval 
was assumed to be wet if any of the following was true: leaf 
wetness sensor output >= 4 or precipitation value > 0.

TABLE II. DATASETS USED FOR MODEL VALIDATION

ID Location Sowing date Harvesting date
1 San Romualdo (RA) 28/10/2019 31/06/2020
2 San Romualdo (RA) 13/11/2018 03/07/2019
3 San Romualdo (RA) 31/10/2017 29/06/2018
4 Sant’Alberto (RA) 04/11/2016 23/06/2017

As for the wheat cultivars, only varieties susceptible to the 
stem rust disease were considered for field experiments: the 
bread wheats Arkeos and Gioconda, and the durum wheat 
Farah. Each year these varieties were sown in an
experimental field with plots of 10.5 m2, using an
experimental design in randomized blocks, with 2 replications.
For all the plots considered, no fungicides were performed in 
order not to affect the normal course of the disease.

At present, evaluation of stem rust disease is left to the 
subjectivity of experts' assessment. For this study, 100 plants 
per plot chosen at random were considered and the number of 
plants affected by stem rust symptoms was counted, this 
representing the incidence of the disease as a percentage. In
order to perform a comparison with simulation data, a proper 
taxonomy based on a three-point scale was devised:

Type 1, no epidemics, no plants show symptoms;
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Type 2, moderate epidemics, less than 50% of the
plants presents symptoms;

Type 3, severe epidemics, characterized by the
presence of diffuse symptoms on more than 50% of
the plants.

These data were previously collected by an expert 
agronomist, who performed weekly evaluation of disease
presence, by also annotating the dates of first disease 
comparison and new symptoms. Field surveys were carried out 
until before the senescence phase, taking into account for each 
variety the trend of the two replications. Then, the mean value 
computed on the two replications was considered.

Simulations of the devised model were performed in Matlab
(MathWorks, Natick, MA, USA) using weather data starting 
from the 1st October, which represents the most compatible 
date in northern Italy for the start of sowing operations. A
comparison between the actual symptom dates and those 
obtained through model simulation was performed. Moreover, 
in order to evaluate the capability of the devised index INF to 
represent the epidemic risk, also a comparison with the
epidemic type identified by the expert was performed.

III. RESULTS

The datasets considered for the preliminary validation (Table 
III) covered a wide range of epidemics from absent (Type 1), as
occurred in Sant’Alberto and San Romualdo fields sowed in 
2016 (ID4) and 2017 (ID3), to moderate (Type 2) and severe 
(Type 3), as for the San Romualdo fields sowed in 2019 (ID1)
and in 2018 (ID2).

TABLE III. FIELD SURVEYS FOR MODEL VALIDATION

ID Date of symptom detection Epidemics type
1 16/06/2020 Type 2

2 14/06/2019 Type 2
21/06/2019 Type 3

3 None Type 1
4 None Type 1

The comparison between actual and simulated data shows a 
very good agreement. Indeed, although a perfect match of the 
dates was not possible as field data had already been collected 
weekly, the simulated infections resulted always compatible 
with the field surveys and the disease pressure evaluations.

As one can see in Table IV and in Fig. 5 (red diamonds),
showing the results of the simulation for the experimental field 
in San Romualdo sowed in 2019 (ID1), two infection events of
medium risk were reported. Onsets of symptoms identified by
the simulation were 12/06/2020 and 15/06/2020, respectively.
The presence of these infections was confirmed by the field 
assessment carried out on 16/06/2020, where the three wheat 
cultivars (Arkeos, Gioconda and Farah considered for the 
analysis) showed to be homogeneously but not severely affected
by stem rust disease, with no changes until before wheat 
harvesting on 31/06/2020. Only about 15% of plants resulted
affected (17.5±0.7% of Arkeos, 15±1.4% of Gioconda and

12±1.4% of Farah, values obtained considering two plot 
replications), this is why ID1 was assigned a Type 2 epidemic.
This was correctly simulated by the model, showing medium 
risks highlighted by yellow circles in Fig. 5. In the previous
field assessment performed on 09/06/2020, no symptoms were 
detected. Accordingly, simulation for this period reported low 
risk of epidemics, pointed out by the green circles in Fig. 5.

TABLE IV. DATA EXTRAPOLATED FROM MODEL OUTPUT RELATED TO ID1

ID Date of infection Date of symptom appearance INF [%]
1 05/06/2020 12/06/2020 65 ●
1 08/06/2020 15/06/2020 61 ●

Fig. 5. Result of the simulation for ID1 using San Romualdo weather data,
starting from 1st October 2019 until the last field survey (16/06/2020). Green, 
yellow and red circles stand for low, medium and high risk, respectively. Red 
diamonds evidence the presence of successful infection events. Here, two 
infection events of medium risk (highlighted with the yellow circles) are 
reported.

As one can see in Table V and in Fig. 6, showing the results
of the simulation for the experimental field at San Romualdo
sowed in 2018 (ID2), two infection events of medium and high
risk were reported. Onsets of symptoms identified by the 
simulation were 13/06/2019 and 16/06/2019. These infections
were confirmed by the field assessments performed on 
14/06/2019 and 21/06/2019 (Fig. 7), where bread wheat cultivar 
(Arkeos and Gioconda) proved to be more susceptible than the 
durum wheat cultivar (Farah) observed. In fact, during the 
field survey, when first symptoms appeared, about 14% of
Arkeos and Gioconda plants were affected by stem rust
(14±2.8% for Arkeos and 13.5±0.7% for Gioconda, values 
obtained considering two plot replications) while only 7±1.4%
of Farah plants revealed symptoms. This is the reason why at 
first ID2 was assigned a Type 2 epidemic. During the following 
field survey performed on 21/06/2019 more than 60% of Arkeos
and Gioconda plants resulted infected by stem rust (67±2.8%
for Arkeos and 63±1.4% for Gioconda), while only 32.5±0.7%
of Farah plants showed symptoms. This is the reason why ID2
was globally assigned a Type 3 epidemic. In agreement with 
these findings, stem rust model simulated a medium-risk 
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infection event followed by a high-risk event, evidenced in Fig.
6 with a yellow and red circle, respectively.

TABLE V. DATA EXTRAPOLATED FROM MODEL OUTPUT RELATED TO ID2

ID Date of infection Date of symptom appearance INF [%]
2 08/06/2019 13/06/2019 61 ●
2 10/06/2019 16/06/2019 100 ●

Fig. 6. Result of the simulation for ID2 using San Romualdo weather data,
starting from 1st October 2018 until the last field survey (21/06/2019). Green, 
yellow and red circles stand for low, medium and high risk, respectively. Red 
diamonds evidence the presence of successful infection events. Here, two 
infection events of medium and high risk (pointed out by the yellow and red
circle, respectively) are reported.

Fig. 7. Black rust on wheat (21 June 2019, Ravenna, Italy).

As one can see in Table VI and in Fig. 8, showing the results
of the simulation for the field at San Romualdo sowed in 2017
(ID3), no infection events occurred. The absence of infections 
was confirmed by field assessments weekly performed,
reporting no symptoms detected. For this reason, ID3 was 
assigned a Type 1 epidemic. In agreement with these findings 
the simulation showed a low-risk epidemic (Fig. 8), i.e., no
likely infections were triggered by climatic conditions.

TABLE VI. DATA EXTRAPOLATED FROM MODEL OUTPUT
RELATED TO ID3

ID Date of infection Date of symptom appearance INF [%]
3 None None -

Fig. 8. Result of the simulation for ID3 using San Romualdo weather data,
starting from 1st October 2017 until the last field survey (23/06/2018). Green, 
yellow and red circles stand for low, medium and high risk, respectively. Red 
diamonds evidence the presence of successful infection events. Here, no 
infection events are reported.

Analogously to ID3, as one can see in Table VII and in Fig.
9, showing the results of the simulation for the experimental
field at Sant’Alberto sowed in 2016 (ID4), no infection events
occurred. The absence of infections was confirmed by field 
assessments weekly performed, reporting no symptoms detected
and, therefore, a Type 1 epidemic was assigned to ID4. In 
agreement with field assessments, the output of the simulation 
shows only the presence of low-risk events, highlighted with 
green circles (Fig. 9).

TABLE VII. DATA EXTRAPOLATED FROM MODEL OUTPUT
RELATED TO ID4

ID Date of infection Date of symptom appearance INF [%]
4 None None -
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Fig. 9. Result of the simulation for ID4 using Sant’Alberto weather data,
starting from 1st October 2016 until the last field survey (14/06/2017). Green, 
yellow and red circles stand for low, medium and high risk, respectively. Red 
diamonds evidence the presence of successful infection events. Here, no 
infection events are reported.

IV. CONCLUSION

Wheat stem rust is a destructive disease, usually appearing
late in the wheat growing period, when temperatures are high
[18]. A crop that looks healthy three weeks before harvest can 
be rapidly devastated by stem rust [19], if sufficient inoculum
arrives and meteorological conditions are adequate [24].

The aim of this study was to develop a model to determine
the effect of weather data on infection of wheat by Puccinia 
graminis f. sp. tritici. The model allows to distinguish the two 
main fungal mechanisms triggering an infection, by
considering the effect of weather data on each phase. The
general assumption is that, in presence of inoculum, an 
infection can be triggered with sub-optimal temperatures and a 
large number of wet hours or, on the contrary, with a lower 
number of wet hours characterized by temperatures closer to 
optimal.

Preliminary results show that this system is able to identify
the successful infection events causing symptoms on wheat,
also providing symptoms appearance dates. In all the cases 
considered, the infections simulated by the model
corresponded with the actual infections detected during the 
weekly field assessments. Moreover, the index devised, INF,
enclosing the information of infection likelihood and,
indirectly, also of its efficiency, showed to properly represent 
the actual epidemic levels detected. More in detail, the risk 
levels simulated perfectly matched the epidemic types detected 
for the bread wheat varieties Arkeos and Gioconda,
overestimating the risk level for the durum Farah cultivar only 
once in 2019, when the simulation reported a high-risk 
infection event but the epidemic detected for Farah variety 
was of Type 2.

As already stated, for this study only wheat cultivars
susceptible to stem rust disease (Arkeos, Gioconda and Farah)
were used. Slightly differences between the two bread and the 
durum varieties have already been observed and other varieties 
may show further tolerance differences. Thus, other

experiments are needed to set up a varietal susceptibility
coefficient to adapt and improve model outputs. Therefore, at 
present the system is calibrated for the worse case, thus 
permitting the use of this tool in the most precautionary way.
Further limitation of this study regards the size of the dataset.
A greater number of monitored fields and climatic datasets are 
needed to continue testing the model. At the moment, being 
the disease reappeared in Southern Italy in 2016 and this study 
based on the work performed on our experimental field, no
further data could have been considered. It is worth noting that 
for more robust field data, cultivar plot replications were taken 
into account.

This DSS represents a useful tool to guide field monitoring
in the detection of wheat stem rust disease, activity that 
usually takes long time and several attempts. Furthermore, the 
alerts provided by the model could support decision making in
the choice of the most suitable rust control strategy, allowing 
to respond with timely fungicide applications. Moreover, this 
system could allow to better understand the relations between 
pathogen biology and weather conditions, enhancing our 
knowledge of stem rust epidemiology and helping in 
monitoring the effect of climatic changes on this disease. The 
ultimate use of this model could be in conjunction with other 
wheat disease models to combine technical information and
facilitate environmental impact evaluations, economic
analyses and risk assessments.

In conclusion, this system represents a promising support
tool to enhance wheat stem rust control, especially under 
warmer climate. Preliminary results show a strong correlation 
between simulated and field data, this suggesting a promising 
application in sustainable agriculture of this DSS.
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