
Development of the Detecting System of the

Landmark Tags to Increase the Navigation Accuracy

of an Unmanned Vehicle in a Known Location

Pavel Belyaev, Anton Spivak, Evgenii Neverov

ITMO University

Saint Petersburg, Russia

monoe1337@gmail.com, anton.spivak@itmo.ru, datnever@ya.ru

Abstract—This paper proposes the landmark detection system
for use in unmanned vehicle based on NVIDIA Jetson embedded
device. The paper describes the synthetic dataset generation and
training YOLOv4 neural network using data augmentation and
transfer learning techniques to detect the landmark in incomplete
data conditions. The real-time landmark detection module was
implemented on the NVIDIA Jetson Xavier. The final mean
average precision was resulted as 83.8%.

I. INTRODUCTION

During autonomous movement of unmanned vehicles (UV),

be it cars, robots, drones, etc. navigation plays a key role.

Information about the exact location of the UV allows to

significantly expand the possibility of using autonomous UV,

which will raise the tasks of autonomous UV to a new level.

To solve the positioning problem, satellite navigation sys-

tems (SNS) such as GLONASS and GPS [1] are mainly

used. The advantage of SNS is sufficient outdoor positioning

accuracy and global coverage due to the large number of

satellites. The disadvantages of SNS include the inability to

determine the location in enclosed spaces, as well as a great

dependence on weather conditions. Also, the disadvantages

include insufficient accuracy in the tasks of positioning the

UV.

These shortcomings can be corrected by using additional

methods of UV navigation, namely the use of computer vision

methods. The use of methods for detecting landmarks for

positioning was proposed due to the use of the UV in winter

conditions. This method serves to support UV navigation in

case of failure of the main navigation systems.

This paper deals with the use of artificial intelligence tools,

namely deep learning and the method of computer vision for

detecting landmarks during the movement of the UV in a harsh

climate. The need to use additional methods of orientation is

due to the problems of the navigation systems described ear-

lier. The most commonly used method is localization by means

of a GPS module. However, the need to operate an unmanned

vehicle (UV) in changing conditions (including premises)

imposes restrictions on the use of global positioning systems.

For example, in [2] navigation in an enclosed space based on

various lidar configurations is considered. The approach in [3]

describes the model of the UV functioning on public roads.

The cost function is calculated based on the distance of the

UV from the reference path, that is, the proximity to the edge

of the carriageway. Nevertheless, the departure of the UV, in

which the lidar is used as the main localization sensor, outside

the premises, provided that it functions in an environment

with almost complete absence of obstacles, as well as without

a clearly distinguishable edge of the carriageway, leads to

the impossibility of correctly obtaining information about its

location. In [4] authors proposed the traffic sign recognition

model and deployed it on a Raspberry Pi. The testing was

performed in the TASS PreScan simulation environment which

is an urban environment including cars, pedestrians, and road

signs. The accuracy was 99.8%. Nevertheless, the lack of

suitable datasets in the tasks other than urban environment

leads to the necessity of developing own simulation, followed

by the generation of dataset in conditions close to the expected

conditions of unmanned vehicle use.

Based on the literature review, the following tasks were

concluded: 1. Navigation should be carried out autonomously

2. Due to UV functioning in an outdoor environment with

few features for retrieval, lidar-based systems are not suitable.

3. the use of a computer vision based system is possible,

provided that orienteering marks are added to the terrain.

Orientation marks must be recognized under different weather

conditions (rain, snow) Therefore, it was decided to use a

convolutional neural network approach to create a model for

recognizing a landmark mark as an object and then reading the

encoded landmark as it is coming up This work proposes the

development of a system for detecting landmarks in a snowy

area using YOLOv4 algorithms with subsequent deployment

on NVIDIA Jetson Xavier.

II. DATASET AND OBJECT DETECTION METHODS

A. Data collection

The presence of unique data for research is one of the main

parts in computer vision. The data can be used for object

detection, segmentation, classification. Despite the fact that

there is a large amount of data in the public domain, there

was a problem of the lack of the required dataset, since the

tag model was developed for detection in winter conditions. To

solve this problem, NVIDIA SDK tools were used to generate

a synthetic dataset. NVIDIA has developed Isaac software for

the development of robotic systems and work with artificial

______________________________________________________PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



intelligence. This technology allows robotic systems to be

deployed with subsequent GPU computation, which increases

the speed of computing vision models. Detection methods

based on convolutional neural networks require a large number

of labeled samples to train parameters. But in general, getting

a lot of labeled real data can be tricky [5]. To make up for the

lack of training images, NVIDIA proposed a simple method

for creating images, which is presented below.

The NVIDIA SDK includes the Isaac Engine (Application

Platform), Isaac GEMS (High Performance Robotics Algo-

rithms Packages), Isaac Apps (Reference Applications), and

NVIDIA Isaac Sim (Simulation Platform) [6]. Generating data

Fig.1 in this way allows to collect a sufficient set of data in

the absence of the possibility of collecting real data. Through

NVIDIA Isaac Sim, it is possible to fine-tune data generation,

namely, setting up patterns of object location, illumination,

object overlap with other objects. All of these settings allow

to generate unique data to train models. Finally, affine trans-

formation methods were used for the data to increase its size

by increasing, rotating, cropping the original data. In total, the

final dataset contained 3126 labeled images example of which

is presented on Fig.2.

Fig. 1. Sample of the Blender tag model used for dataset generation

B. Transfer Learning

For the experiment, the transfer learning method was used

for training on an synthetic dataset. For this, a pre-trained

weights were applied, which had been trained using the MS

COCO data in the original weight file, to pick patterns from

the initial set of objects in the MS COCO set [7]. This is

necessary to detect tags in a winter environment.

Transfer learning is a method for training neural networks,

when the templates of a neural network that has been trained

on one task are transferred to another task. This approach

to solving the problem allows you to use the accumulated

patterns from other datasets, which leads to optimization of

Fig. 2. An example of a generated dataset in Unity3D using the Isaac SDK

training on a smaller dataset. Considering the fact that the

data can be perfect (artificial / generated data that may not be

widespread or complex), this training method allows to use

patterns from real data to improve the quality of training. One

of the main advantages of this training method is the speed

of training the model with increased accuracy and less error,

which allows to create more complex models in less time,

unlike training the model from scratch. Neural networks that

are used for classification usually contain N output neurons in

the last layer, where N is the number of classes. In the problem

of landmarks recognition, the number of classes differs from

the number of classes in the original dataset. In this case it

was necessary to completely discard this last layer and put a

new one with the required number of output neurons.

C. YOLOv4

The choice of YOLOv4 architecture is based on the fact that

YOLOv4 indicators are located on the Pareto optimality curve

(Fig. 3) and outperform the fastest and most accurate detectors

in both speed and accuracy, which improves performance in

real time, based on [5]. Generally, a convolutional neural

network is the most representative deep learning model. It

is widely used for ultra-high resolution image reconstruction,

image classification, face recognition, object detection, pre-

diction and video analysis. In addition to YOLO [8], network

architectures such as AlexNet, VGG [9], SSD [10], and R-

CNN [11] are used to improve performance and accuracy.

The choice of the YOLOv4 architecture is due to the fact

that, unlike the YOLOv3 implementation, YOLOv4 is more

appropriate for object detection in real-time. Some YOLO

releases, such as tinyYOLO, allow models to be deployed to

the embedded devices [12] with minimal loss of precision.

Nevertheless, the advantage of using NVIDIA Jetson as an

embedded device is the possibility to involve CUDA cores and

thereby significantly speed up the inference of the model, i.e.

to increase the frame rate. Unlike other CNNs that operate on

a two-step basis, YOLO is able to predict bounding boxes and

class probabilities in one step. Algorithms Fast R-CNN, Faster

R-CNN are based on the region proposals approach, that is,

region assumptions. They consist of two parts, the first part

builds sets of regions that, with a certain probability, display

______________________________________________________PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 37 ----------------------------------------------------------------------------



an object other than the background. The second part deals

with the processing of these assumptions and, based on the

processing results, classifies the object at each frame.

To balance speed and accuracy, the YOLOv4 networking

architecture uses Darknet-53 inter-stage partial connectivity

(CSP) framework. Based on [8], CSP Darknet-53 has the best

performance on the COCO dataset. To increase the receptive

field that affects the network unit, YOLOv4 integrates a spatial

pyramid pooling unit (SPP) and a modified path aggregation

network (PANet). As for the detection head, the YOLOv4 head

is assembled in a new model designed to predict objects at

multiple scales. There is only one class of objects in this study.

Therefore, the number of filters = (class + 5) × 3 = 18.

Also in YOLOv4, new improvements were implemented, in-

cluding Weighted-Residual-Connections (WRC), Cross mini-

Batch Normalization (CmBN), Mish Activation, Complete

Interaction over Union (CIoU) loss, Mosaic data augmentation,

and DropBlock regularization.

Fig. 3. Speed and performance of different models [8]

D. Research results

At this stage of the research, testing will take place in

Unity3D using the Isaac SDK development tools. Isaac Sim

allows to use Unity3D as the simulation environment for

Isaac robotics. Isaac Sim Unity3D provides an expandable test

environment to evaluate the performance of the Isaac naviga-

tion stack. It also provides an infinite stream of procedurally

generated, fully annotated training data for machine learning.

Features include emulation of sensor hardware and robot base

models, scene randomization, and scenario management.

E. Equipment setup

Target platform is NVIDIA Jetson AGX Xavier. Xavier

module makes AI-powered autonomous machines possible,

running in as little as 10W and delivering up to 32 TOPs. As

part of the world’s leading AI computing platform, it benefits

from NVIDIA’s rich set of AI tools and workflows, which

enable developers to train and deploy neural networks quickly.

Jetson AGX Xavier is supported by the NVIDIA JetPack

SDK, which can help save big by reducing development

effort and expense. has an integrated Volta GPU with 512

CUDA cores that supports floating point and half floating point

calculations. An Intel Realsense D415 camera was used to read

the image. The D415 has a standard field of view and uses

rolling shutter sensors. This field of view results in higher

depth resolution for smaller objects or when more precise

measurements are required. The rolling shutter sensors and

smaller lenses allow for a lower cost, yet highly capable depth

camera. The assembled robot model for further research stages

is shown in Fig.4.

Fig. 4. Developed testing robot model for subsequent experiments

III. PERFORMANCE AND ACCURACY RATINGS

To assess the performance and accuracy of algorithms, there

are a number of estimates, which can be calculated for a

specific set of data, you can compare the performance of

several algorithms. In our case, the problem arises of choosing

the necessary measure due to the fact that it is necessary to

evaluate both the quality of detection of objects from the list

of classes we have defined, and the correct classification of

this object.

For the task of detecting objects, such a measure as the

average accuracy (AP) is usually used, obtained from two

indicators: precision and recall [13].

Possible events when an object of one specific class is

detected: True positives - an object of the required class was

______________________________________________________PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 38 ----------------------------------------------------------------------------



correctly enclosed in a framing window - found. False posi-

tives - something else was enclosed in the framing window,

but not an object of the desired class.

A. Precision and recall

Precision denotes the percentage of true positives among all

results for this class.

Precision =
True positives

True positives+ False positives
(1)

Recall refers to the percentage of framing windows found

for a given class, among those represented in the ground truth

of this image.

Recall =
True positives

Number of ground truth boxes
(2)

B. IoU

In order to be able to assess the correctness of enclosing an

object in a framing window, the IoU metric is used. A typical

threshold value indicating correct detection is IoU more then

50% Fig.5.

Fig. 5. Examples of Intersection over Union (IoU) [14]

Intersection over Union is a metric used to assess the

accuracy of algorithms that detect objects. The IoU value is

equal to the quotient of the area of intersection of the predicted

framing window and the response window from the ground

truth by the area of the union of these windows Fig.6.

C. Mean Average Precision

Since we are evaluating the accuracy for the detection

and classification algorithm, we cannot limit ourselves to the

average accuracy, so in the future we will operate with the

concept of Mean Average Precision. Measure Mean Average

Precision (mAP) - average AP.

Mean Average Precision =

∑Q

q=1
AP (q)

Q
(3)

where Q - number of requests.

Fig. 6. Finding the Intersection over Union (IoU) [14]

IV. RESULTS

After the process of labeling the data, the stage of training

was performed. Training data is presented as the form of the

ratio of the image with the txt file of the label. The label file

consists of the class number and point coordinates in the x,

y, x + h, y + h format, where h is the width and height of

the stroke. In this experiment, training took place in one class,

and therefore the cfg parameters were selected. As mentioned

earlier, the transfer of training the model took place on the pre-

trained MC COCO scales, since it contained the basic patterns

for the label. The original data was generated synthetically

and was close to ideal, which could lead to poor results, so

the transfer learning was performed. The model was trained

on a working machine using an NVIDIA GTX 1060 6GB

graphics card. The training was performed on the operating

system Ubuntu 18.04, with the version of the NVIDIA driver

450.102.

TABLE I. COMPARISON OF MAP MEASURE AND AVERAGE IOU FOR A 
DATASET WITH AFFINE TRANSFORMATIONS AND WITHOUT AFFINE 

TRANSFORMATIONS IN SIMULATION

Model without affines, % Model without affines, %

mAP 25.8 83.8

average IoU 46.31 78.73

Initially, the training was organized on 1563 images with a

size of 640x480, duration of 2000 epochs, however, the output

model had a low accuracy rate for objects located further than

10 meters. To solve this problem, affine transformations were

applied. In turn, affine transformations create new images by

changing the color, tilt, reflection, zooming, scaling, noise

of the original image. In [15] it is said that the use of

affine transformations is not enough for a greater increase in

accuracy, but as a result of additional training on the changed

______________________________________________________PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 39 ----------------------------------------------------------------------------



Fig. 7. Transfer learning results for training on dataset without affine
transformations in 2000 epochs

Fig. 8. Transfer learning results for training on dataset with affine transfor-
mations in 1600 epochs

data, there was a significant increase in accuracy (Table I).

The increase in accuracy is due to the fact that the initial

training was performed on similar, equidistant generated data

(Fig.7). When testing the detection of landmark objects of

the model was carried out on remote data, the neural network

could not recognize small objects, however, scaling of the data

improved maP and IoU. In turn, additional training took place

over 1000 epochs. Training results on dataset without affine

transformations (Fig.7) were achieved in the interval of 2000

iterations with the mAP metric 100%, when additional training

of the model with affine transformations (Fig.8) required 1600

iterations with mAP 100%.

The next experiment was aimed at measuring mAP with and

without affine transformations. The measurement performed

on the data created in the Unity3D environment. The data was

created in a way to simulate snow conditions, the distance

Fig. 9. Test results for models without affine transformations AP=0.64% (top)
and with affine transformations AP=87% (bottom)

from the camera to the object is comparable to the real

proportions. As a result of the experiment, 100 images were

measured at a distance of 10 meters, 20 meters, 30 meters

from the camera to the object. The results of the experiment

are presented in the table II and in the figure Fig.10. Testing

on images generated in an artificial testing environment, where

the location of the mark varied from 5 meters to 20 meters,

the affine transformations model (Fig.11) produced a result

with a mAP metric of 100% and an average IoU metric of

78.73%, when on the same data the model without affine

transformations (Fig.12) gave a result with a mAP metric of

46.31% and an average IoU metric of 42.75%.

Fig. 10. Graph comparing the read tag-landmark for the data set using the
affine transformation and a set of data without the use of affine transformations

______________________________________________________PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 40 ----------------------------------------------------------------------------



Fig. 11. Transfer learning results for generated landmark data with affine
transformations in 2000 epochs

Fig. 12. Transfer learning results for generated landmark data without affine
transformations in 1600 epochs

TABLE II. COMPARISON OF MAP MEASURE FOR A DATASET WITH 
AFFINE TRANSFORMATIONS AND WITHOUT AFFINE 

TRANSFORMATIONS

mAP with affines, % mAP without affines, %

10 meters 92.18 86.93

20 meters 83.71 56.49

30 meters 75.91 15.33

40 meters 63.28 0

V. CONCLUSION

Outdoor landmarks detection system using YOLOv4 algo-

rithms, followed by the deployment of NVIDIA Jetson Xavier

was proposed in this paper. In order to deal with the lack of a

real-world data YOLOv4 neural network was trained using

synthetic dataset. YOLOv4 network structure was tweaked

to create more robust landmark detection functionality. This

training method is suitable for creating a model with no or a

small amount of data.

Further step of the research will be the development of a

detection system based on NVIDIA Jetson AGX Xavier. For

this, a system consisting of three levels was developed. The

first level of the system is reading the landmark by using

the YOLOv4 neural network. This system was presented in

this article. The second level of the system is the tag object

proximity module based on the apriltag module in the NVIDIA

SDK. The third level is a module for reading a landmark and

placing coordinates on a known map of the navigation area.

This system was presented in this article.

REFERENCES

[1] D. Wells, N. Beck, A. Kleusberg, E. J. Krakiwsky, G. Lachapelle,
R. B. Langley, K.-p. Schwarz, J. M. Tranquilla, P. Vanicek, and
D. Delikaraoglou, “Guide to gps positioning,” in Canadian GPS Assoc.
Citeseer, 1987.

[2] W. Zhang, N. Liu, and Y. Zhang, “Learn to navigate maplessly with
varied lidar configurations: A support point based approach,” arXiv e-

prints, pp. arXiv–2010, 2020.

[3] J. Fickenscher, S. Schmidt, F. Hannig, M. E. Bouzouraa, and J. Teich,
“Path planning for highly automated driving on embedded gpus,”
Journal of Low Power Electronics and Applications, vol. 8, no. 4, p. 35,
2018.

[4] P. S. Zaki, M. M. William, B. K. Soliman, K. G. Alexsan, K. Khalil,
and M. El-Moursy, “Traffic signs detection and recognition system using
deep learning,” arXiv preprint arXiv:2003.03256, 2020.

[5] C. Wu, S. Xu, G. Song, and S. Zhang, “How many labeled license
plates are needed?” in Chinese Conference on Pattern Recognition and

Computer Vision (PRCV). Springer, 2018, pp. 334–346.

[6] Nvidia Isaac Documentation. [Online]. Available: https://docs.nvidia.
com/isaac/isaac/doc/overview.html

[7] L. Torrey and J. Shavlik, “Transfer learning,” in Handbook of research

on machine learning applications and trends: algorithms, methods, and

techniques. IGI global, 2010, pp. 242–264.

[8] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal
speed and accuracy of object detection,” 2020.

[9] W. Yu, K. Yang, Y. Bai, T. Xiao, H. Yao, and Y. Rui, “Visualizing and
comparing alexnet and vgg using deconvolutional layers,” in Proceed-

ings of the 33 rd International Conference on Machine Learning, 2016.

[10] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on

computer vision. Springer, 2016, pp. 21–37.

[11] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961–2969.

[12] S. Zhang, Y. Wu, C. Men, and X. Li, “Tiny yolo optimization oriented
bus passenger object detection,” Chinese Journal of Electronics, vol. 29,
no. 1, pp. 132–138, 2020.

[13] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for object
detection,” 2013.

[14] Quality metrics and loss functions 3D ML prob-

lem. [Online]. Available: https://medium.com/phygitalism/
3d-ml-metrics-loss-functions-9708ff0476e2

[15] A. Mikołajczyk and M. Grochowski, “Data augmentation for improving
deep learning in image classification problem,” in 2018 international

interdisciplinary PhD workshop (IIPhDW). IEEE, 2018, pp. 117–122.

______________________________________________________PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 41 ----------------------------------------------------------------------------




