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Abstract—Autonomous mobile robots have been discovering
recently a wide range of applications in various areas of human
activities. A robot uses many data sources (sensors) to recognize
its current situation, including video, inertial, acoustic, mechan-
ical stress. The data flows from such sources are redundant,
error prone, delivered with a rather high rate, and contain
considerable information as for the ongoing events so present
measurement noise, errors and insignificant data about minor
fluctuations of the environment and the device. They present a
source information for the inference modules such as navigation,
localization, path planning, scheduling etc. The total number of
the ongoing events can be large. They have different importance
for the movement control. In this paper, we consider a method for
intelligent data selection. The method is based on the Additive
Increase Multiplicative Decrease (AIMD) algorithm. The effect
is in filtering the most significant information to forward to the
robot movement control.

I. INTRODUCTION

Autonomous mobile robots have been discovering recently
a wide range of applications in various areas of human activ-
ities, including industry, commerce, social life, environmental
projects, health care, science, education, agriculture, house-
keeping [1]. For several decades the efforts of the research
community in the area are directed to the development of
methods and technologies that could make such devices able
to operate in a completely or partly unknown environment
without any or with a restricted supervision of a human distant
operator, e.g., see [2], [3].

The autonomous movement is subject to Artificial Intel-
ligence (AI) and Ambient Intelligence (AmI) research [4].
Autonomous mobile robot as a system operates in the environ-
ment which is either completely unknown and to be discovered
or is described in part by a map and a path within the map
the robot has to follow. The environment can change during
the operation and those changes could be unpredictable. So
could do the robot operational mode due to malfunction of
unpredictable interaction with the environment. For the proper
operation of the system the changes should be detected and a
reaction should be designed. For these reasons an autonomous
navigation is based upon sensors data which provide varied
information about surrounding objects and inner information
that could be useful for locomotion and navigation.

In this paper, we propose a fuzzy method for intelligent
data selection, which exploits the balance of optimistic and
pessimistic expectations of the environment uncertainty. It
aims at the estimation of the current rate a sensor delivers
essential data. The method is based on the well-known in

data communication Additive Increase Multiplicative Decrease
(AIMD) algorithm [5], [6]. The intelligence property of the
method reflects the human cognition function for the selection
problem. The increase or decrease rules are applied when a
fault in decision leads to the strong reaction (multiplicative
decrease) or a positive sign leads to small reaction (additive
increase).

The method is intended to reduce the amount of data passed
to processing for the robot movement control, planning and
decision making (data inference) modules. The selection is ap-
plied before, if possible, or after the raw data smoothing phase.
The effect is in filtering the most significant information. As
a result, the method advances the situation detection function
of a robot by providing high priority information for further
recognition and control. This property relates the method to
the generic problem of information ranking in AmI [7].

The rest of the paper is organized as follows. Section II
introduces the selection problem in sensed data. Section III
considers the proposed AIMD based selection method. Sec-
tion IV describes the particular algorithm to implement the
selection method. Section V shows our early numerical experi-
ments to analyze the basic properties of the method. Section VI
concludes the paper.

II. BACKGROUND

Nowadays there exists a wide variety of sensors that deliver
diverse multitude of raw data. The sensors could be classified
by the nature of the data they perceive, e.g., spatial, temporal,
electromagnetic, mechanical and others, or by the nature of
the sensor activity, e.g., inner (battery level, wheel angle) ex-
ternal (distance to the obstacle), active (sonar sensor), passive
(camera). A range of classifications exists in the literature as
well.

The data flows provided by such sources as sensors are
redundant, error prone, delivered with a rather high rate, and
contain large arrays of the information as for the ongoing
events so present measurement noise, errors and insignificant
data about minor fluctuations of the environment and the
device. Basically, using sensor assumes that further processing
of the sensors data could infer useful information about the
world around necessary for robot safe navigation and mission
completion.

After primary processing the flows are used as input data
for the robot movement control subsystems. They present a
source information for the inference modules such as nav-
igation, localization, path planning, scheduling, etc. So far
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there are the following two major problems to solve when
interpreting the sensed data.

1. The raw sensors data carry uncertainty due to the lack
of precision, external factors intervention or noise of the signal
(Gaussian or non-Gaussian).

2. The items in these data flows are not equally significant.
Some of them are critical for the device integrity, some are
essential for the proper operation and/or mission completion
and some are useless.

Let us discuss the second problem more in detail. Single
sensor (e.g., camera or inertial sensor) in most cases does
not provide sufficient information for control purposes and
is not reliable enough. (If it stops the operation the device
becomes senseless). So far, the set of sensors carried by a
robot normally is vast. Hence the amount of data they produce
is as well and the number of events inferred from these data
is large. Meanwhile in many cases the attributes enumerated
above (critical, essential, useless) could not be attached to a
particular sensor. Let us consider a battery level sensor. If
the battery level is high there is no need to monitor it often
on the regular basis. But if the charge level is low or it is
high but decreases faster than expected these data should be
examined by the inference modules and future activity should
be replanned perhaps.

Hence any sensor can produce crucial or insignificant data
but their value depends on many factors and the measurement
policy depends on our expectation and the estimate of the
environment uncertainty. If the battery is full, we expect the
device to operate reliably for some period and there is no need
to control it tightly. If the charge level is about to expire, we
have to inspect it regularly to plan further moves. Either the
device directs to the charging station or in the case of highly
important mission follow some other scenario.

To deal with the first problem the data smoothing tech-
niques are widely used. These methods are based in part on
the control theory. Different variations of the Kalman filter [8]
could be applied for the state estimation if there is a linear low
that bounds observed variables, e.g. velocity and acceleration,
or distance and velocity. Another major method is Particle
filter [9] which is based on sequential Monte-Carlo technique.
Due to the computational complexity of these two methods
simple techniques as moving arithmetical average, median,
mode filters are widely used in practice as well. The sensor
producers and the robot designers either apply filters to smooth
raw data.

Smoothed data are further processed by sensor fusion algo-
rithms [10], [9], which combine data from several sensors and
relevant information from corresponding databases to produce
more precise and specific inference about the surrounding
environment. Meanwhile Kalman filter and Particle filter could
be treated as fusion technique as well, e.g., see [11]. Basically,
they are used to evaluate the path traversed for the navigation
and localization tasks.

Another approach to data fusion takes more attention
recently. Fuzzy methods and intelligent algorithms are applied
to events and qualitative properties detection and recognition.
In particular, [12] studies neural net for driving style and gait
properties identification by the smartphone accelerometer.

Although the first problem enlisted above is researched
extensively, meanwhile the second problem is to be solved
now by the choice of sensors set and their allocation. This
approach cannot reduce the amount of data produced by the
chosen sensors. Meanwhile we have two critical restrictions for
any autonomous device operation. Those are the battery charge
and the computational facilities. Therefore, the implementation
of MonteCarlo procedure for every data item (or their essential
part), computing matrix operation for Kalman filter or invoking
neural network for relatively minor time windows by the device
facilities of an autonomous device consumes its operation
time. If the data are sent to some server, then wireless data
communication consumes battery resources as well. Hence the
topical problem we address in this paper is to avoid the fusion
of useless data.

III. AIMD BASED DATA SELECTION

A. Abstract Sensor Concept

Consider a sensor as a mapping Sm �→ Sn, where Sm ⊂
R

m and Sn ⊂ R
n. In most cases |Sm| > |Sn| and commonly

m > n. as well. These inequalities form one of the main
sources of uncertainty for the raw sensor data since the actual
mapping is many to one. The set Sm represents the real world
phenomenon. It could be continuous or discrete. Also it could
be a conjunction of several continuous intervals or be any other
subset of Rm. The set Sn is discrete in most cases due to the
sensor output granularity. Smoothing raw data done internally
by the sensor producer or by the robot computing facilities still
keeps it discrete due to the discrete nature of the computing
architecture but the latter transforms Sn �→ S̃n and |Sn| ≤
|S̃n|.

Consider x, y ∈ Sn and introduce the norm ||x − y|| ∈ R

which defines the distance between two values measured by a
sensor. The norm is additive and ||ax|| = a||x||, a ∈ R, x ∈
Sn. Then let us denote a sequence si = {si0, si1, . . . }, sik ∈
Sn of data produced by ith sensor and a sequence ti =
{ti0, ti1, . . . } of timestamps that label the corresponding ele-
ments of the sequence si.

Now we have to define the measure of an environment
uncertainty which could be used as an identification of sig-
nificant changes that are worth passing to the data fusion and
inference subsystems. Let us consider a single measurement
produced by a sensor as a sum

||sk|| = ||σk||+ rk,

where σk is a true value of variable measured and rk ∈ R is
an error created by some reason.

If the signal remains unchanged or changes insignificantly
there is no need to pass new measurements further repeatedly.
Let us assume that E[rk] = 0. The assumption is natural and
means that a sensor is properly calibrated and E[sk] = E[σk].
Now if rk probability density function is continuous and
symmetrical then

P{rk > 0} = P{rk < 0} = 1/2.

Therefore we denote pm probability that m values of rn
consequently are above or below zero. One could see that
pm = 1/2m. Thus, if the signal changes with probability
1− pm and remains the same with the probability pm.
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Now let us make an assumption that presence of a sequence
in a data stream such that m values of rk in a row are above
(below) zero indicates the presence of the real changes in the
environment. Then pm is the probability of a first kind error.
If the rk probability density function is not symmetrical this
normally means that a sensor needs further error alignment
and/or calibration. In the case pm presents upper or lower
bound of the first kind error.

In most practical cases value rk and its expectation are
unknown. Let us consider a sequence of m values of sk
increasing or decreasing monotonously. If the signal is constant
then this means that rk is monotonously increasing or decreas-
ing as well. They could be all negative, all positive or both
negative and then positive. Hence in the case pm also could
be treated as an estimate for the first kind error probability.

The expectation E[rk] could be evaluated using smoothing
filters. We propose the exponential average of si sequence,
since its parameters allow setting of the balance between past
and present values in the average and it doesn’t require to
maintain data windows as, e.g., moving average does. The filter
is applied as follows

||ŝik|| = κ||sik−1||+ (1− κ)||ŝik||, (1)

where 0 < κ < 1.Here κ is the parameter that define the level
of the contribution of past and present values.

If for a sensor current value of the exponential average is
ŝk than the estimation of the r̂k = ||sk|| − ||ŝk||. Hence the
sequence of r̂k could substitute sequence of rk.

This additional filter is applied if primary filters don not
succeed. Otherwise the primary filter output if available could
be used as ŝi sequence. The filter is not applied for periodical
or fluctuating data.

B. The Selection Method

Let us define a delay τn, which is applied before the sensor
data are passed to the control and inference modules.

The delay is dynamically adjusted depending on the proper-
ties of the data in the stream and expresses the relation between
optimistic and pessimistic expectations on the environment
uncertainty. The delay grows linearly if data do not indicate
need for further control and decreases exponentially if the
environment may change rapidly.

As we mentioned above the monotonous growth or de-
crease of the data in the flow may indicate changes in the
measured metrics. But there are metrics that normally change
during proper operation, e.g., position, sometimes velocity,
battery level, video in the stream etc. If this kind of data change
according to some expected pattern they could be delayed as
well. Therefore, besides increase and decrease values we intro-
duce feedback signals that selection algorithm receives from
the control subsystem. The feedback evaluates the significance
of the data passed and contributes into multiplicative decrease
rate.

The feedback is presented as a sequence {kn}∞n=0, where
kn estimates importance and usefulness of the selected data
sent after τn interval. The value kn ∈ R and 0 < kn ≤ 1. It
evaluates the importance measure of new information about

Fig. 1. The sensed data processing

the environment brought to the data fusion and inference
subsystems by the new portion of data selected.

In the scale 1 means crucial or very important and 0 means
useless. If there is a lack of computing facilities the discrete
or even binary value crucial/useless could be applied. Also,
we define one special signal kurgent which means that sensors
data should be sent immediately.

The general scheme of the interaction between different
data processing techniques is presented in Fig. 1.

The flow of the feedback signals generates additional data
stream between data fusion system and data selection module
but the amount of data is rather small, could be composed
out of binary values and if the network capacity is scarce
these binary digit could be included in the reserved field of
acknowledgment messages of the protocol used.

Hence the delay τn evaluates dynamically as follows.

τn+1 =

⎧⎨
⎩

α

kn + 1
τn, if specified events have happened

τn + δ, otherwise
(2)

Here 0 < α < 1 is a delay decrease factor or pessimistic
level and δ > 0 is the constant that increases the delay or the
optimistic level. Therefore, the method reduces the sending
rate if the device operation is stable and increases the rate if
the environment or the operation mode have been changed.
The decrease rate stays within the interval [α/2, α].

The specified events are one of the following

1) The value of ||sik − sik−1|| > 0 or ||sik − sik−1|| < 0
for m time consequently, where m is a parameter.

2) The ||sik|| = (1 + β)||sik−1||, where β > 0.5 is a
parameter.

3) The value ||ŝik − sik|| > 0 or ||ŝik − sik|| < 0 for m
times in a row, where m is a parameter.

4) If KF or PF are used the event is: the error evaluated
before a correction step does not change sign ν′ times
in a row.

5) A critical event is identified. The list of the criti-
cal events is formed in advance and normally they
mean something which needs immediate reaction,
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TABLE I. PARAMETERS OF THE DATA SELECTION ALGORITHM WITN

NO FEEDBACK.

Parameter Meaning

α Multiplicatice deacrese parameter.

δ Additive increase parameter.

m The length of meaningful monotonous
sequence in the data stream.

InitDelay Initial value of the delay

UpperLimit UpperLimit of the delay which
shouldn’t be exceeded.

e.g., sharp increase of acceleration. Then the signal
kurgent is sent.

The first event indicates that the signal value σk could
change. The second event indicates that the jump in the data is
observed and further control signal might be needed. The first
even estimates the noise rn and uses it to indicate the change
in the signal. The fourth event follows predefined list which
should be formed in advance.

At the end of τn interval the current value ŝik is passed to
the inference facility.

Therefore, if the sensor data are stable, uniform and
correspond the current operation of the autonomous mobile
robot they do not contain new insight about the environment
and hence are not passed to the data fusion modules. If a
noticeable change happens then the data could be significant
and are passed to the inference facility for further processing.

If the feedback is not taken into account then (2) transforms
into AIMD algorithm as follows:

τn+1 =

{
ατn, if specified events has happened

τn + δ, otherwise
(3)

IV. SELECTION METHOD IMPLEMENTATION

We have developed the algorithm that implements the
selection principles described above to a sequence of one-
dimensional data sk ∈ R. The norm ||sk|| = sk. The algorithm
could be applied to a single sensor data that is expressed as a
real number e.g. accelerometer, gyroscope, magnetometer and
any other real metric including those constructed in advance
from the raw data e.g. the distance to a barrier etc.

To test the proposed approach under the hardest conditions
we implemented a version with no feedback. The algorithm
has no information about the nature of the data and the
requirements of the control and planning subsystems and hence
relies only on the balance of the optimistic and pessimistic
expectations. The algorithm identifies a monotonous sequence
of the size m and after the current delay period expires it
calculates new value τn basing on the expression (3). The
version is presented as Algorithm 1.

The sequence identification is not restricted by a single
delay period. If the sequence is located across two neighbor
periods it will be identified as well. The parameters of the
algorithm are described in Table I.

All parameters are integer values. As it was mentioned
above the parameters and the relation between them should

express the analyst’s expectations of the level of the uncertainty
and the ability of the algorithm to react on the changes of
the environment. Thus if α > 3 then the second monotonous
sequence in the row will decrease the delay about ten times
or more. The initial value expresses our expectation on the
reasonable delay duration for the problem at hand and δ affects
the ability of the algorithm to recover the delay after decrease.
Parameter m could be tuned using the estimates pm evaluated
above. We recommend to set UpperLimit = 10 m at least.
Otherwise in some cases the delay could become too high and
the algorithm could loss contact with the control subsystem.

The algorithm implementation is rather simple so its effi-
ciency is high. All calculations are done on flight by one pass
forward. The size of data window to maintain is two which
smallest of possible. It does not need to sort values as median
filters do. For every data entry two comparison, two addition
and two assignments are done. The delay evaluation block
needs less than ten operations. The calculation is executed
using integer values and if value α = 1/2 is used the binary
shifts could be implemented instead of integer division. In the
algorithm Xi refers to the raw sensor data and Si to the data
selected by the algorithm.

V. EARLY NUMERICAL EXAMPLES

The algorithm was applied to the data set presented in the
open free access UCI Machine Learning Repository [13]. We
used a data set of single chest-mounted accelerometer. The
dataset collected data from a wearable accelerometer mounted
on the chest and intended for Activity Recognition research
purposes. The data set contains Uncalibrated Accelerometer
Data those were collected from 15 participants performing 7
activities. The activities are as follows.

1) Working at Computer
2) Standing Up, Walking and Going up down stairs
3) Standing
4) Walking
5) Going Up Down Stairs
6) Walking and Talking with Someone
7) Talking while Standing

Several researches are devoted to the activities identifi-
cation problem, e.g. [14]. We chose these data to test the
algorithm since they follow the concept the algorithm is based
upon. The data present periods of a stable regular activity
which switches rarely to another stable activity. Hence the
algorithm is expected to filter data within the stability periods.

We applied the algorithm developed to the data presented in
the data set. The accelerometer provides values for three axes
which were considered separately. The parameters were α = 2,
δ = 2, m = 3, 5, 7, 10 and variable UpperLimit = 20. For x
axes the results are presented in Fig. 2 and 3. The stepwise
line presents smoothed data where all data within nth delay τn
are substituted by the data sent to the data inference modules
in the beginning of the new τn period. The width of the step
graphically expresses the length of the corresponding delay. As
the algorithm aims τn increases when the signal is stable and
reaches UpperLimit. If the signal fluctuates then τn decreases
and reaches its minimum τn = 1.

The algorithm reduction facility is one of its key char-
acteristics of, i.e., the amount of data filtered. It could be
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Algorithm 1 Real Data Selection Algorithm with no Feedback.

function AdaptiveDataSelectio(α, d, m, InitDelay);
1: {Set initial dealy}
2: ActiveDelay=τ=InitDelay;
3: {Initialize the monotonous sequence size counters and the

flag}
4: inc = 0;
5: dec = 0;
6: SeqFound=0;
7: for i = 0 to End of data stream do
8: if Xi+1 > Xi then
9: inc = inc+ 1, dec = 0;

10: end if
11: if Xi+1 < Xi then
12: dec=dec+1, inc=0;
13: end if
14: {Set the flag if monotonous sequence found}
15: if inc > m || dec > m then
16: SeqFound=1;
17: end if
18: ActiveDelay=ActiveDelay-1;
19: if AvtiveDelay=0 then
20: {Assign new delay value}
21: if SeqFound=0 then
22: τ = �τα�;
23: else
24: τ = τ + δ;
25: end if
26: if τ >UpperLimit then
27: τ =UpperLimit;
28: end if
29: {Send current value to the inference subsystem}
30: Si+1 = Xi

31: ActiveDelay=τ ;
32: SeqFound=0;
33: else
34: Si+1 = Si;
35: end if
36: end for
37: return S;

TABLE II. DATA REDUCTION PROPERTY

X Y Z
m = 3 336 277 294
m = 5 112 105 169
m = 7 67 33 6
m = 10 33 27 33

expressed through the total amount of τn values assigned.
Table II presents this characterizes obtained in the experiments.
Total size of the raw data set is 600.

The numerical examples show that parameter m has signif-
icant influence on the amount of the data selected. Therefore
bigger m values correspond to more optimistic expectations
on the environment uncertainty.

For y axes we present the results for m = 3 and m = 5 in
Fig. 4 and 5 to show the influence of relatively small values
of m. For m = 3 the τn value decreases to its minimum and

Fig. 2. Smoothing example. X axes. m = 5

Fig. 3. Smoothing example. X axes. m = 10

Fig. 4. Smoothing example. Y axes m = 3

Fig. 5. Smoothing example. Y axes. m = 5

stays at τ = 1 . . . 9 for the data indexes from 156 to 378 and
then increases again. For m = 5 the delay is low only between
300 and 400.

For z axes we present the results for m = 3 and m = 10.
For all values of m used in experiments the method removed
the outlier at i = 122. The results are in Fig. 6 and 7.

Also we evaluated the relative error of the Algorithm in
the form

Δ = max
i

|Xi − Si|
Si

. (4)

In all experiments it stays within the interval 10 . . . 15%. For
z axes the pick at i = 122 has relative error about 34% in all
experiments as well. If removed from the data set the relative
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Fig. 6. Smoothing example. Z axes m = 3

Fig. 7. Smoothing example. Z axes. m = 10

error return to the interval mentioned above. So far intelligent
selection filters bursts and follows the trend of the data set.

VI. CONCLUSION

This paper introduced a new fuzzy method of intelligent
sensed data selection. The novelty is in using the AIMD
strategy, which previously was used in several other problem
domains. The method detects the most significant information
for autonomous mobile robot movement control, implementing
information ranking in large incoming flows of sensed data. In
addition, the method employs the feedback exchange between
selection algorithms and the sensor data processing. The intel-
ligent selection is close to the rules that human applies in solv-
ing a similar selection problem. The method is implemented
using the memory saving algorithm with linear complexity.
Early numerical examples show the efficiency of the proposed
method. We plan to investigate analytical properties of the
method, including the estimate of the maximum relative error,
the average amount of the selected priority information, and
the average delay.
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[11] A. T. Erdem and A. Ö. Ercan, “Fusing inertial sensor data in an extended
kalman filter for 3d camera tracking,” IEEE Transactions on Image
Processing, vol. 24, no. 2, pp. 538–548, 2015.

[12] C. MacAdam, Z. Bareket, P. Fancher, and D. Ervin, “Using neural
networks to identify driving style and headway control behavior of
drivers,” Vehicle System Dynamics - VEH SYST DYN, vol. 29, pp. 143–
160, 01 1998.

[13] Uci machine learning repository. center for machine
learning and intelligent systems. [Online]. Available:
https://archive.ics.uci.edu/ml/datasets/Activity+Recognition+from+Single
+Chest-Mounted+Accelerometer

[14] P. Casale, O. Pujol, and P. Radeva, “Human activity recognition from
accelerometer data using a wearable device,” vol. 6669, 06 2011, pp.
289–296.

______________________________________________________PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 54 ----------------------------------------------------------------------------




