
Database Index Balancing Strategy

Michal Kvet

University of Žilina
Žilina, Slovakia

Michal.Kvet@fri.uniza.sk

Abstract— Database index is a specific object, by which the data
can be accessed effectively. Default relational database index is
B+tree, which is balanced to ensure consistent and fast access by
the traverse path. By using index, data retrieval process can
benefit. Vice versa, other manipulation operations must apply all
changes to the structure causing the performance drop. This
paper deals with the data indexing techniques. It extends the
already defined Notice list layer and segregates the balancing
strategy into the separate process, by which the original
transaction can be approved sooner. Thanks to that, Insert,
Update and Delete operations are influenced only in a minimal
manner, but the robustness of the indexing strategy is always
ensured limiting the whole data block set scanning necessity. It
proposes own architecture concerning to the undefined values.
They are placed in the main index. It the row migration caused
by the Update operation is present, automatic management
removes such limitation to ensure optimal layout of the index.

I. INTRODUCTION

Relational database systems are defined by the database
itself and instance formed by the memory structures and
background processes managing the whole ecosystem. Users,
developers and administrators cannot directly deal with the
data, all operations are done and supervised by the instance.
The aim of the optimization and main performance aspect is
just the process of the data transfer from the database to the
instance to evaluate and build resultset and vice versa,
individual changes, new states and corrections are operated in
the memory consecutively stored in the database [6]. Thus, the
efficiency of the data transfer is inevitable to be highlighted
and covered, whereas database systems form the core part of
the whole information technology. Intelligent information
systems need to manage and process not only current valid
data, but the whole evolving data set over the time is
highlighted [11], [12], [14]. Conventional database is
characterized by treating only current valid data, any change
forces the system to replace original state by the new version.
Thus, historical data cannot be managed later, at all, although
historical states can be temporarily obtained by the transaction
logs to ensure consistency, isolation and durability aspects.

The aim of this paper is to cover the process of the data
transfer between the database and instance and ultimately all
the way between the system and the user. It deals with the
indexes as optimized data locator module, migrated rows as
the result of the Update operation, by which the new version
does not fit the original position. The second part of the paper
proposes own architecture dealing with NULL values directly

in the index. Thirdly, new balancing method operations are
introduced. Thanks to that, index itlesf is not degraded over
the time.

The proposed paper is defined as follows. Section 2 deals
with current trends and techniques in relational databases.
Section 3 deals with the limitations. Section 4 covers the own
proposed techniques to optimize data transfer using the index.
Section 5 offers computational study.

II. STATE OF THE ART

Data are stored in the database, physically organized in the
data segments (data definition) and extents (set of physical
data blocks) [3], [21]. Extent is the allocation unit; blocks are
not created individually to ensure the performance. Individual
blocks and extents are interconnected via the linear linked list,
starting by the object definition itself, up to the High Water
Mark (HWM) symbol pointing to the last associated block to
the data structure, either table or index. Data are stored in the
data blocks. Generally, they are distributed randomly, system
automatically finds the available block [1], where the data
portion can be placed. After the Update and Delete operations,
blocks can be fragmented ending in managing partially or
totally free space in the blocks. Thus, as the consequence,
some blocks can be totally empty, caused either by the
flushing the block, or as the result of new extent association. If
the user wants to get relevant data from the database, they
must be located in the first phase. For dealing with the data,
two principles can be identified. The easiest, but the most
demanding solution is based on the scanning whole data block
set sequentially. Each block is transferred from the database
into the memory Buffer cache for the evaluation. There, the
block is parsed locating data rows, which are consecutively
evaluated, whether the conditions of the original statement are
met or not. The most demanding operation is just the I/O
operation during the loading process. Note, that the block can
be even empty with no relevant data inside.

The second evaluation stream principle is delimited by the
index usage. Database index is a specific object stored in the
database, by which the relevant data portion can be easily
located in the database. It can be formed by various
architectures, like B+tree [4], bitmap [5], hash [10], etc. The
most often used relational index is a B+tree defined by the
root node, internal nodes and leaf layer nodes, which consist
of the pointers to the physical database layer – ROWID.
Address values ROWID require 10 bytes and contain the

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

information of the data file, data block and position of the
block inside the block itself [4], [8]. By using index, traverse
path ensures logaritmic complexity. By raising ROWID value,
either unique row can be identified or the range of adresses
can be used. In the second phase, physical ROWID is parsed
and particular block is loaded to the memory Buffer cache for
the consecutive processing and evaluation. As evident, by
using the index, only relevant data blocks are loaded into the
memory. As the result, the processing time, I/O operation
demands are lowered, whereas the amount of data to be
processed and evaluated is significantly lowered. If the amount
of data to be treated is high (based on the experiments, the
border is approximately 20% of the total data amount [2], [5]),
whole table is scanned sequentially. If files are distributed
across multiple physical discs operated by the several
interfaces, loading and processing can be done in parallel. One
way or another, it is evident, that the data amount to be treated
is really significantly lowered. Data service robustness is
a core element dealing with the data ensuring performance
[16], which must be reflected to any data structure perspective
[22].

III. NULL VALUE AND MIGRATED ROWS MANAGEMENT

In principle, there are two core methods dealing with the
data – Index Unique Scan and Index Range Scan [4], [15],
[22], which differentiate the result set data amount. If the
condition is based on the unique constraint, result set consists
no more than one row, thus if the ROWID is located in the
index, processing in this stage can be ended. If the condition
can result in producing multiple rows, particular data ROWID
pointer is located in the leaf layer, the next nodes are scanned
for the condition as well. In comparison with standard B-tree,
it uses the benefit, that the leaf layer nodes are interconnected.
The result of such index processing is a list ROWIDs, which
point to the blocks with the relevant data. Such blocks are
loaded into the memory by invoking Table Access by Index
Rowid (TAIR method) [15], [18].

Similarly, if the data are to be updated, these must be
located and loaded into the memory for the replacing
operation. If the data model evolve over the time, problem can
be even deeper covering all integrity constraints and rules [7].

As stated, problem is just the efficiency of the data location
inside the index. The most often used B+tree index is balanced
tree ensuring, that the traverse path length from the root
element into any leaf node is always the same. By reaching
this prerequisite, optmizer can pre-calculate the estimated
costs of the processing. Generally, three problem areas
regarding the index structure can be identified influencing the
global performance.

The first problem is associated with the data block
positions, which can be incorrect reflecting the situation, that
the original block is not suitable for the updated tuple. If the
size of row after the change does not fit the original block,
database processor must look for another suitable block, which
can hold particular object. It means, that the ROWID pointer
of the index adresses the original block, where pointer to the

another block is present. As a consequence, during the data
block access, two blocks must be loaded – original block, to
which the index ROWID points and the block, where the data
actually resist. In general, several migrated rows can be
present, with various depth, as well. Thus, not only two blocks
need to be loaded and scanned. Whereas the index is not
notified, performance of the system based on the index access
is still worse and worse. Existing solution is based on the
index rebuild option [9], [13], which is not, however,
conventient due to multiple factors. First of all, it requires
many system sources to perform such operation. If the offline
mode is used [4], original index is dropped, followed by the
new index creation. Thus, during the rebuild process, table
must be scanned sequentially resulting in really poor
performance produced to the user. Vice versa, if the online
mode of the index rebuild operation is used, new index is
created, while the original still exists in the system. Therefore,
additional storage demands are required, as well as many
system resources consumption. Our proposed solution uses
notification layer, which does not require whole index rebuild
operation, just the changes reflecting migrated rows are
applied.

The second problem deals with undefined values, which are
not covered in the database index. The reason is based on the
relational algebra, which cannot compare NULL values
mathematically forming the 3 valued-logic. Introducing NULL
values to the evaluation results in the necessity to maintain
such values in a specific manner. Any mathematical operation
based on the NULL value produces NULL as the result [17].
Therefore, index traverse operations based on the operand
smaller (<) and larger (>) cannot be applied to the NULLs.
Similarly, condition based on the equality cannot be used, as
well. Although it can be solved by the NULL management
module introduced in [15], it has several limitations regarding
the performance, whereas particular values are not part of the
index and must be loaded separately on demand. In this paper,
we propose own solution for loading and managing NULL
values inside the index, mostly with emphasis on the memory
efficiency. In spatio-temporal environment, the whole time
spectrum is modelled, even with emphasis on the data
corrections, so many undefined values and fragmentations can
be present [15], [17], [19].

The third problem covered by this paper is based on the
balancing process. Database index is formed by the B+tree
index tree, which is always balanced, thus the traverse path
length is always the same. The balancing activity is done
during any data change, either directly or postponed to the end
of the transaction, thus after reaching commit (transaction
approval), each change is index reflected and the each index
tree is balanced. In [15], index balancing operation has been
extracted into the separate transaction process, thus the main
transaction can be processed and approved sooner. If multiple
data rows are updated and new protions are loaded, it can
provide significant benefit. Based on the study defined in [15],
for the sensor based network, the processing time costs are
lowered to 73%. Physically, any change was stored in the

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 215 --

Notice list, by which the introduced background process
Index_balancer was notified. As a consequence, data retrieval
process needs to check the index itsef, as well as the Notice
list, which can be demanding, if the data amount is
continuously changing. If the environment is shifted into the
temporal sphere [10], [20], which is nowadays very
widespread, whereas it is necessary to evaluate not only
current valid data, but the whole data evolution over the time,
the problem is even deeper and the pressure to ensure
reliability and performance is sharpened. The solution is based
on adding data directly into the index irrespective of the
balancing. After the change, Balancer background process is
activated. In that case, data retrieval does not need to cover
two structures, whereas it is ensured, that relevant data are
always present in the index.

Next section can be divided into three parts, the first deals
with the migrated rows. In the second part, we propose
solution for dealing with NULL values. The third part covers
the balancing operations by introducting new background
processes and specific architecture.

IV. SOLUTION – BALANCER LAYER, INDEX STRUCTURE

EXTENSION

A: Migration
To ensure performance efficiency of the whole system, it is

inevitable to cover all the data inside the index, to propose
robust architecture reflecting the attribute list and order of
individual attributes of function results inside. The order of the
elements is important, covered by [4], [5]. If the attribute order
fits the Select statement, database optimizer selects between
Unique and Range Scan. Specific solution provides Full Scan
methods, by which the index is either scanned sequentially for
the evaluation by assuming, that the size of the index is always
smaller in comparison with the whole table. Fast Full Scan
method is suitable, if the order of elements is not correct for
the Select statement, however, the index itself holds all data
attributes necessary for the evaluation. The core problem is the
data row migration. Although the system idenfities relevant
data block, several ones must be loaded instead to locate
particular row. Fig. 1 shows the architecture.

Fig. 1. Migrated row management [4]

There is an index locating the row by using ROWID. The
direct data block is stored in the database necessary to be
loaded. Block 1 is transferred to the memory Buffer cache for
the evaluation. There is, however, another pointer, thus the
Block 2 is loaded resulting in multiple loading operations. As
evident, Block 1 does not need to be loaded. If the index

holded new ROWID, just the Block 2 would be loaded
instead. There is, however, no pointer from the block to the
index, thus index canot be notified without the rebuild
opeartion, which, however, reconstructs the whole index. To
solve that limitation, we introduce another module. Any
change resulting in migrated row necessity notifies this layer.
Then, the Balancer background process checks the prerequisite
in the Migration module and applies changes to the index.
Whereas the balancing is done outside the main operations,
they are not absolutely influenced in a negative manner.
Proposed architecture is shown in Fig. 2. Several indexes can
be present in the system. For each data row in the Migration
module, there is a check box list indicating, whether the
identified migrated row has been applied to the index or not.
Naturally, it is checked by the Balancer background process
and if the index holds all table data portion, such row change
would be always present. If the index does not manage NULL
values, such data pointer does not need to be there. In that
case, however, such index is marked as already applied such
change.

Fig. 2. Migration module

B: NULL value management

The second part of the proposed solution is based on the
NULL value management. As stated, undefined values are not
directly part of the index. In [15], NULL management module
has been proposed. For the purposes of the performance,
undefined values cannot be randomly distributed in the
container covering undefinition. In [15], it has been sorted
based the time validity or spatial positions. In this paper, we
propose new architecture, by which each undefined data
portion is delimited by the transaction origin (its unique
identifier) and time position of the transaction approval. If
using the temporal database concept, direct predecessor and
descendent is referenced, as well, to create complex evolution
strategy. Optionally, the amount of the predecessors can be
set, by default, value 1 is set. Borders specified by the time
frame can be used, as well. Thanks to that, as undefined values
can be identified bar more easily, whereas particular
transaction data are always present.

Limitation of the already proposed solution in this paper is
just the overall architecture. NULL values are located outside
the main index resulting in the necessity to scan to structures.
Main index hold only correctly specified values, undefined
values are present in the separate database segment. Thus,
such blocks must be loaded into the memory, similarly to the

indexn index2 index1 Migration module...

Block 1 Block 2

migrated
row

Update

Applying by Balancer

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 216 --

index itself. As a consequence, the number of blocks to be
loaded is increased – reflect also the aspect of the
fragmentation of the blocks, which can be present. Therefore,
this paper evaluates the benefit of two structures
interconnection forming the global index_null structure. Let
create an index based on the attribute A, B, C of the table T.
The command to create such index is following (the name of
the index is “ind”):

Create index ind on T(A,B,C);

In the above case, undefined values are not managed, at all.

The existing solution to cover all data is to transform the
undefined values using the function call, like NVL:

Create index ind on T(nvl(A, ‘x’), nvl(B, ‘x’), nvl(C, ‘x’));

The limitation of the function call is based on the extended

processing demands, but mostly size demands. NULL value
itself does not require extra storage, after the transformation, at
least 1 byte is inevitable for each data row, based on the data
type. Generally, it can require many bytes.

To create NULL management module externally, following
command extenstion can be used. Note the keyword
NULL_module forcing the system to create extra module,
outside the main index holding NULL values. As stated, by
default, undefined values inside the NULL management
module are sorted based on the time perspective or position
(association to the region) respectively.

Create index ind on T(A,B,C NULL_MODULE);

In the above case, NULL values are stored externally in the

separate segment for each associated index. There are no extra
demands based on the tuple amount, just the
NULL_MODULE is added as a structure.

The third approach dealing with the NULL values inside
the index is based on the internal representation. In
comparison with the function call, data are transcoded
internally on demand, thus no additional size demands are
present. There is just the condition expressing the positioning
principles – how the data are organized inside the index, just
with emphasis on the undefined values. By default, particular
undefined values are stored internally, however, there is also
option to manage them separately to the mainly defined data.
The main difference between the already stated approaches is
based on the fact, that in any case, all indexed data are part of
just one segment, either stored internally or externally.
Reflecting this fact, the proceduce can significantly benefit,
whereas the loading process does not need to locate to
segments, block from the outer position is always the same, so
the I/O loading process is far easier and straightforward.

The syntax of the solution consists of the three element
groups – list of attributes, location of the undefined values
(external or internal) and the last module expresses the
condition set, which is applied during the data location. Such

conditions replace the original mathematical approach
considereing NULLs. Compared to the function
transformation, this proposed solution stores NULLs value
physically as NULLs (with no additional demands), for the
evaluation, transformation is used, either to locate existing
data tuples, but it is used for the placing new rows into the
structure. Architecture of the solution is shown in Fig. 3.

Fig. 3. NULL inside the index

Technically, we can see NULL value directly as part of the

index, but during the data retrieval, optimizer automatically
shiftes new condition reflecting the possibility to position
undefined value inside the main index structure.

Create index ind on T(A,B,C,
 {internal | external},
 condition_set1 {,condition_set2, …});

C: Balancing
The last part to be handled in this paper is reflected by the

index balancing. In principle, two opposite categories
influenced by the index structures can be identified. The first
group benefits from the index existence and uses it to locate
data easily, just by traversing index and locate pointer directly
shifting the processing to the relevant block. This group is
formed by the data retrieval operation – Select and can
partially cover locating operations during other operations
(Insert, Update and Delete). This category handles the
integrity constraint rules, too. The opposite group is covered
by the operations; which demands are increased. Processing
time is extended slowing down the performance. Additional
costs are associated with the index operations, whereas each
change must be applied there. Our proposed solution refers to
the solution rule based on the post-indexing layer. Notice list
was the core element, which registers any change applied to
the index firing the trigger operation to balance the structure.
Originally, balancing was done in the two phases. New data
portion was located in the Notice list in the first phase,
followed by applying change into the index structure directly.
Each index has its own Notice list module. Reflecting the
practical usage of the existing solution, two bottleneck
limitations can be identified. If any change was applied to the
data, such change vector would be necessary to place to each
element of the Notice list layer set. Thus, if the table consists
of 10 indexes, the change vector had to be copied ten times,
always with the same information. Secondly, it cannot be
ensured, that the data change is applied to each index at the
same time. Therefore, particular index usage was strongly
delimited by the amount of change vectors waiting to be
applied in the index. Database optimizer, however, cannot

150

NULL 250 NULL

12 ROWID 93 ROWID 123 ROWID 253 ROWID NULL ROWID

NULL ROWID 121 ROWID 222 ROWID 255 ROWID 949 ROWID

44 ROWID 96 ROWID 197 ROWID 254 ROWID 714 ROWID

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 217 --

calculate the estimated additional costs reflecting the Notice
list consequencing in inproper decision. Although the index is
selected to be suitable for the query – it can have the optimal
structure based on the condition set and selected attributes, the
global performance does not need to be ensured. The main
reason reflects the index relevance and applied changes. If the
update stream is too high, it can naturally happen, that most of
the data are paced in the change vectors of the Notice list,
which is modelled by the linked list, thus the benefit of the
original B+tree is erased, if most of the required data are not in
the index, but in the pending structure for processing by the
Index_balancing process. The problem is therefore clear, it is
necessary to create new robust solution process for the
balancing. The solution presented in this paper is based on the
external background process managing the balancing
operation. Thus, it is not ensured, that the traverse path from
the root to any leaf node is always the same, but any node can
be directly located inside the structure. The rule, that reference
values with lower key are in the left part, while higher key
values can be located in the right part is always met. Example
of the tree (for the explanation reasons, it is modelled by the
binary tree) is shown in Fig. 4, 5 and 6. Let original tree
consist of the 6 elements – Fig. 4. Now, the tree is suitably
balanced. For the insert operation, let’s assume to add four
new elements into the index (values 1, 2, 6 and 10) – Fig. 5.
After adding values 6 and 10, right part of the tree is extended.
Value 2 is connected to the value 3, value 1 is connected to
newly inserted node 2. As shown in fig. 5, particular tree is not
balanced. All new row references are added to the index. In
this moment, original transaction can be accepted and
approved. Fig. 6 shows the solution after the balancing
operation. It is evident, that the depth of the left part of the tree
is lowered from the value 4 to 3, by rotating the internal node
3 to the leaf. For the result, decision internval element would
be node 2, instead of 3, done by the right side rotation. By
using this external technique, change operations can be ended
successfully significantly sooner, on the other hand data
retrieval process is not optimal from the index structure point
of view, whereas it is only partially balanced anytime. On the
other hand, Balancer background process is triggered as soon
as the balancing is necessary, thus it is done almost immediate.
The processing and global performance benefits from the fact,
that multiple balance operations can be done at once, in
comparison with the balancing necessity for each transaction
operation. Note, also, that the balnacing can be spread across
multiple transactions.

Fig. 4. Original index structure

Next paragraph deals with the complex architecture of the
solution solving all mentioned performance limitations. Fig. 7
shows the architecture.

5

7 93

84

2 6

1

10

Fig. 5. Index structure after the Update operation (no balancing)

7 92

84

1 6 103

5

Fig. 6. Balancing outside the main transaction - results

D: Complex architecture

To cover the efficiency of the proposed solutions, complex
architecture has been developed covering all dealt problems
and limitations. Core part is formed by the optimizer, to which
the query is shiften to identify the most beneficial data access
path. Optimizer decision is based on the query definition, its
parsing and database statistics, which must be up to date to
reach optimalized performance [13]. Autoindexing has been
defined by the DBS Oracle, by which the definition of the
index set can be enhanced automatically by adding and
removing indexes from the system based on the current
queries, optimizing strategy and global performance. It uses
extended statistics and virtual indexes to evaluate costs and
benefits of the particular index. Left part of the architecture
shot deals with the balancing. Note, that each change is
directly applied to the index, Index Balancing Requests
module just references the changes, so the balancer can easily
identify subject of interest. Two additional modules can be
located there. NULL Manager background process deals with
the undefined value transaformation internally to propose
categorization and location by removing the impact of direct
mathematical comparison limitation. Migration module is
another extension listing data block shiftments operated by the
Migration manager background process. The whole
architecture is in Fig. 7.

Next section offers the performance evaluation of the
proposed solutions, categorized based on the three levels
defined in section 4. Namely, the first part covers the
migrating row impacts, the second part deals with the NULL

5

7 93

84

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 218 --

value implementation inside the index structure and the last
experiment evaluation manages the balancing processes.

index set

database

Optimizer

QUERY

Index
balancing
requests

Autoindexing
process

DB
statistics

Query evaluation
costs / benefit

Master indexing

NULL Manager
background process

NULL categorization
memory structure

Migration module

Migration
management

Fig. 7. Complex archtiecture – Index balancing, NULL management and
Migration module extension

V. COMPUTATIONAL STUDY

Performance characteristics have been obtained by using
the Oracle 19c database system (Oracle Database 19c
Enterprise Edition Release 19.0.0.0.0 – Production).
Parameters of used computer are processor: Intel Xeon E5620;
2,4GHz (8 cores), operation memory: 16GB, HDD: 500GB.
For the evaluation, a table containing 10 attributes originated
from the sensors were used, delimited by the composite
primary key consisting of two attributes. The table contained
1 million rows, 10% of them contained undefined values. Two
index structures were defined, one implicit covered by the
primary key, the second index extends the primary key by
covering attribute, which can hold NULL value. The Select
statement was evaluated covering all attribute values. The
condition limited the amount of data to 10% of the whole data
set. One percent of rows was stored in a migrated blocks. Data
set management and structure was introduced in [15].

The reference model for the evaluation and comparison was
MODEL 0 defined by the two B+tree indexes (primary key
and user-defined) with no undefined values special support.
There is no support for the NULL value handling, nor external
balancing. Thus, in the results, this model reaches 100% of the
processing costs and size demands. To evaluate the the
performance benefits, size demands, and processing time of
the Select statement is analyzed in this paper. Three
experiments can be identified in the main part of this section,
afterwards, the complex architecture is created and evaluated,
reflecting the section 4. Experiment 1 deals with the proposed
solution for data migrating impact removal, by introducing
Migration module. Experiment 2 covers the undefined values.
It compares already existing systems with the internal
transformation, so the undefined values can be stored directly
in the main index. In Experiment 3, balancing demands and
benefits are evaluated.

Experiment 1
The referential model (MODEL 0) for this study does not

use any addional layer for providing migrated row
management. Thus, the efficiency of the index structure is
lowered over the time. As opposite, new index for such

timepoint is created, so its structure is optimal for that moment
(MODEL 1). Both these models form the borders reflecting
the performance. Our proposed solution is defined by the
MODEL 2 mark. As evident, performance is almost the same
in comparison with MODEL 2, the difference is 1,3% for the
data management (Insert, Update, Delete and Select
statement). It must be, however, stated, that reaching optimal
performance delimited by the MODEL 1 forces the system to
rebuild indexes regularly. In dynamic systems, it can be even
so often that the original index does not even have time to
build completely and is no longer up to date. As mentioned,
the additional costs are at the level of 1.3% with 1%
fragmentation caused by migrated rows (experimented 10
times, values express the average value), but the index is still
usable and regularly directly optimized in the soil structure.
Fig. 8 shows the reached results. 1 million of Update
operations were performed, 1% of them required additional
block space, which cannot be provided directly. Thus, it
required new storage allocation, multiple blocks were
interconnected. Values in fig. 8 are expressed in percentage
reflecting additional costs of the processing time. Optimal
solution is provided by the MODEL 1.

Fig. 8. Migrated row management

Experiment 2
NULL management can be processed either externally by

using NULL management module (MODEL 3), externally
using the proposed solution in this paper (MODEL 4) or
internally by the transformation od demand – data are stored
as NULL, however, for the evaluation, autotransformation is
done to user availability of the mathematical comparison –
MODEL 5. Fig. 9 shows the reached results. Reference model
is MODEL 0, in which no undefined values can be present.
For the evaluation, 10% of the data are selected, of which 10%
are undefined. Based on the study, whereas MODEL 0 cannot
hold undefined value, whole block set associated with the
table must be scanned sequentially, reaching 100%.

Whereas 10% of data are to be processed, in optimal
environment, it should be done in 10% of the total demands of
the table. Such results cannot, be, however, reached, whereas
the index access must be identified, particular index node
blocks need to be loaded into the memory Buffer cache, if they
are not present there. NULL management module (MODEL 3)
requires 15,7% of the processing time, which is mostly
enhanced by the two separate segments, which must be loaded
and evaluated. Loading is a sequential process generally,

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 219 --

evaluation can be done in parallel in the memory Buffer cache
scanning. MODEL 4 uses autotransformation and stores data
in the same segment, although the delimitation between these
strucures can be be easily identified. The total demands are
14,5%, there. MODEL 5 provides the best solution by storing
undefined data internally. In comparison with function based
index, the total improvement can reach up to 50% due to
additional disc storage capacity, as well as the necessity to
revert the function results to the original form for the result set
produced to the user.

Fig. 9. Undefined value management results

Experiment 3

Balancing operation is an inevitable part of the index
management. Without such activity, original index can
degrade to form linear linked list by shifting the complexity
from O(log(n)) to O(n). The original perspective of the B+tree
indexing is based on the fact, that individual nodes are always
balanced. In our proposed solution, index balancing operation
is extracted into the separate transaction. For the purposes of
this paper, it is compared to the two existing approaches
MODEL 0 is referential, so the balancing operation is done
directly in the main transaction ensuring always balanced
structure after the transaction approval. MODEL 6 categorizes
the balancing, it is operated outside the main transaction,
howver, particular changes are noted in form of change
vectors stored in the Notice list. Thanks to that, during the data
retrieval, index is scanned in the first phase, followed by the
Notice list traversion, where the data are array formed
generally. MODEL 7 uses the proposed architecture, in which
new node is placed in the leaf layer irrespective of the
balancing, such node is marked to be balanced and introduced
Balancer background process is notified to start balancing.
Fig. 10 shows the results managing data retrieval process by
using index. Index range scan is used, thus it provides optimal
order of attributes, there. MODEL 0 requires 100%, MODEL
6 requires additional 14,2%. MODEL 7 places data directly to
the index structure and balancing is then done separately. It
requires additional 11,3%. Note, that the transaction approval
process is lowered in MODEL 6 and MODEL 7 up to 30%.

VI. CONCLUSIONS

Performance of the data management in the database is a
crucial element of almost any information system. It is
evident, that the amount of the data to be processed and

evaluated is still rising very rapidly. Effective methods for
dealing with the data, from the access perspective, are really
important. In this paper, three core problems were discussed.
The first one is associated with the data row migration. After
the update operation, new state does not need to fit the original
place inside the block, so it must be shifted into different
position in another block. As the result, migrated row is
created, however, the index set still points the the first –
original block. Thus, several blocks need to be loaded into the
memory for the evaluation. Our proposed solution is based in
additional specific layer notifying index balancer to apply the
changes. Thanks to that, impact of the data migration is
limited in time. From this point of view, the index does not
lose efficiency over time.

Fig. 10. Balancing operation - results

The second problem dealt is based on undefined values.
Many times, data reliability cannot be ensured, resulting in the
necessity to store and evaluate undefined values, marked as
NULL. Such values, however, cannot be mathematically
compared. Proposed solution defines transformation modules
managed internally, so any value can be part of the index.

The third element covered by this paper is reflected by the
index balancing. The processing itself is extracted and done in
the separate transaction operated by the Balancer background
process. Thanks to the proposed architecture, any data change
can be approved sooner by applying the change into the index
leaf layer, however the balancing is not done directly. The
depth of the traverse path is changed and internal background
processes are notified to start activity. It uses the fact, that
multiple change operations can be routed to the same
balancing operation, thus, finally, the costs of the balancing is
lowered.

In the future, our emphasis will be on the complex index
supervision layer, by which the index set can be optimized. It
will use index in index strategy, so the Where condition of the
Select statement can be divided into multiple tasks evaluated
in parallel, by which the processing can end sooner.

ACKNOWLEDGMENT

This publication was realized with support of the
Operational Programme Integrated Infrastructure in frame of
the project: Intelligent systems for UAV real-time operation

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 220 --

and data processing, code ITMS2014+: 313011V422 and co-
financed by the Europen Regional Development Found.

REFERENCES
[1] Abdalla, H. I.: A synchronized design technique for efficient data

distribution, Computers in Human Behavior, Volume 30, 2014, pp.
427-435

[2] Behounek, L., Novák, V.: Towards Fuzzy Patrial Logic. In 2015
IEEE Internal Symposium on Multiple-Valued Logic, 2015.

[3] Bottoni, P., Ceriani, M.: Using blocks to get more blocks: Exploring
linked data through integration of queries and result sets in block
programming, IEEE Blocks and Beyond Workshop (Blocks and
Beyond), 2015.

[4] Bryla, B.: Oracle Database 12c The Complete Reference, Oracle
Press, 2013, ISBN – 978-0071801751

[5] [5] Burleson, D. K.: Oracle High-Performance SQL Tuning, Oracle
Press, 2001, ISBN - 9780072190588

[6] Ceresnak, R., Matiasko, K., Dudas, A.: Influencing migration
processes by real-time data. In Proceedings of the 28th conference of
Open innovations association FRUCT

[7] Delplanque, J., Etien, A., Anquetil, N., Auverlot, O.: Relational
database schema evolution: An industrial case study, IEEE
International Conference on Software Maintenance and Evolution,
ICSME 2018, Spain, 2018, pp. 635-644

[8] Eisa, I., Salem, R., Abdelkader, H.: A fragmentation algorithm for
storage management in cloud database environment, Proceedings of
ICCES 2017 12th International Conference on Computer Engineering
and Systems, Egypt, 2018

[9] Feng, J., Li, G., Wang, J.: Finding Top-k Answers in Keyword
Search over Relational Databases Using Tuple Units, IEEE
Transactions on Knowledge and Data Engineering (Volume: 23,
Issue: 12, Dec. 2011) , 2011.

[10] Honishi, T., Satoh, T., Inoue, U.: An index structure for parallel
database processing, Second International Workshop on Research
Issues on Data Engineering: Transaction and Query Processing, 1992.

[11] Janáček, J., Kvet, M. (2016). Sequential approximate approach to the
p-median problem. In Computers & Industrial Engineering 94 (2016),
Elsevier, ISSN 0360-8352, pp. 83-92.

[12] Jánošíková, Ľ., Kvet, M., Jankovič, P., Gábrišová, L. (2019). An
optimization and simulation approach to emergency stations
relocation. In Central European Journal of Operations Research,
ISSN 1435-246X, Roč.27, č.3 (2019), pp. 737-758.

[13] Kriegel, H., Kunath, P., Pfeifle, M., Renz, M.: Acceleration of
relational index structures based on statistics, 15th International
Conference on Scientific and Statistical Database Management, 2003

[14] Kvet, M. (2019). Complexity and Scenario Robust Service System
Design. In Information and Digital Technologies 2019: conference
proceedings, Žilina, 2019, ISBN 978-1-7281-1400-2, pp. 271-274.

[15] Kvet, M.: Managing, locating and evaluating undefined values in
relational databases. 2020

[16] Kvet, M.: Complexity and Scenario Robust Service System Design.
In Information and Digital Technologies 2019: conference
proceedings, Žilina, 2019, ISBN 978-1-7281-1400-2, pp. 271-274.

[17] Lien, Y.: Multivalued Dependencies With Null Values In Relational
Data Bases. In Fifth International Conference on Very Large Data
Base, 1979.

[18] Mirza, G.: Null Value Conflict: Formal Definition and Resolution,
13th International Conference on Frontiers of Information
Technology (FIT), 2015.

[19] Moreira, J., Duarte, J., Dias, P.: Modeling and representing real-
world spatio-temporal data in databases, Leibniz International
Proceedings in Informatics, LIPIcs, Volume 142, 2019

[20] Steingartner, W., Eged, J., Radakovic, D., Novitzka, V.: Some
innovations of teaching the course on Data structures and algorithms.
In 15th International Scientific Conference on Informatics, 2019.

[21] Tilgner, M., Ishida, M., Yamaguchi, T.: Recursive block structured
data compression, Proceedings DCC '97. Data Compression
Conference, 1997.

[22] Vinayakumar, R. Soman, K., Menon, P.: DB-Learn: Studying
Relational Algebra Concepts by Snapping Blocks, International
Conference on Computing, Communication and Networking
Technologies, ICCCNT 2018, India, 2018

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 221 --

