
The Effect of Partitioning and Indexing
on Data Access Time

Veronika Šalgová, Karol Matiaško
University of Žilina

Žilina, Slovakia
Veronika.Salgova, Karol.Matiasko@fri.uniza.sk

Abstract—An increasing amount of data is stored and
managed in today's information systems. For this purpose,
relational databases are used very often. Fast access to data is
becoming increasingly important and great emphasis is placed on
its improvement. The data access time can be significantly
improved by creating partitions and index structures, or their
combinations. From the point of view of efficiency, it is not
appropriate or necessary to access all data. They can be divided
into smaller parts, which will facilitate the execution of certain
operations and bring efficiency, whether in terms of time or
performance. As far as indexing is concerned, there is also an
opportunity to access only the data sought, thus avoiding the
Table Access Full method. This paper deals with the effect of
partitioning and indexing on data access time, which is compared
in seven different scenarios of different combinations of
partitions created over tables and indexes.

I. INTRODUCTION

 Relational databases are one of the most often used
techniques to store data of the information systems. Despite the
fact that they were first defined in the 60s of the last century,
they are still very powerful to cover the current environment
and technology demands. An important indicator is the time
required to perform basic operations to retrieve data. Reducing
data access time is becoming increasingly important and it
receives a lot of attention. A large amount of data is used in
many areas. Higher data access times bring undesirably higher
costs. For such large data, it is necessary to process them as
optimally as possible and thus reduce the costs of different
forms. A suitable solution for powerful optimization of query
execution is building indexes on data sets. An indexing strategy
is the design of an access method to a searched item.
Accessing a smaller group of data that are partitioned instead of
going through all the data can bring great efficiency as well.
The created indexes, partitions, and also their interconnection
can have a significant effect on data access time [2], [6]. The
aim of this paper is to compare various situations that differ in
the usage of the index or the attributes on which the index is
created. Each situation was tested on a table with created
partitions or without partitions and also with a combination of
partitioned and non-partitioned indexes.

II. INDEXING

An important and powerful part of the optimization of
query processing is an index structure that can significantly
improve the performance of the database [1]. The index itself
is used for direct access to the row inside the database by

using ROWID on the bottom leaf nodes. ROWID is the locator
for the data and consists of these layers: identification of the
data file, in which the row resists, the pointer to the block, and
position inside it [3]. With ROWID, table data can be easily
retrieved with a minimum number of reads executed. Various
structures of an index can be used in database systems, but the
most widely used structure is the B-tree, respectively B+ tree.
It is a balanced structure, which means it has the same length
from each leaf to the root. It does not degrade over time and it
remains balanced [4]. However, if there exists no suitable
index, every single row needs to be read to find the desired
information in the table. This method is known as Full Table
Scan and is one of the most expensive operations. To ensure
efficiency and robust performance, it is necessary to limit the
usage of Full Table Scan methods [7], [11], [13].

III. PARTITIONING

A technology physically dividing certain large objects of
relational databases into smaller parts based on the logical
division of the data is called partitioning. It is possible to
divide tables, indexes, and index-organized tables into smaller
sections, as is shown in Fig. 1. These database objects are then
enabled to be managed and accessed at a finer level of
granularity. A subdivided part of a database object is called a
partition. The main advantages of creating partitions in
databases are their manageability, higher performance,
availability reasons, or load balancing. [5] Performance is
increased by working only on the data that is relevant.
Availability is improved on the basis of individual partition
manageability. Costs are decreased by storing data in the most
appropriate manner. Partitioning has also an easy
implementation because it is not required applications and
queries to be changed [8], [9], [14].

Fig. 1. Partitioned table [6]

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

There are three techniques by which partitions can be
created. They are based on information allocation processes,
which are Hash, Range, and List. According to them, there
exist following partitioning techniques:

 Hash Partitioning
 Range Partitioning
 List Partitioning

When creating partitions, each row in a partitioned table
must be assigned only to a single partition. The data is divided
into partitions based on a value called a partition key. This key
can consist of one or more columns, which varies according to
different partitioning techniques. It is important to select a
partition key to be a column that is almost always used as a
filter in queries. When it is so, it is not necessary to access all
the data but only the relevant partitions. It means, partition
elimination is used, and it can bring a significant performance
improvement when querying large tables.

In our experiments, the range partitioning technique was
used. It maps data into partitions according to ranges of
defined partition key values. Ranges must be specified for
each partition so that it can include rows for which the
partitioning expression value belongs to a given range. Ranges
should be contiguous, but they cannot overlap with each other.
In general, range partitioning is useful in cases when data can
be logically segregated by some values. It is the most common
one among the partitioning techniques and is able to take
advantage of partitioning elimination in many cases, including
the use of exact equality and ranges – less than, greater than,
between, and so on. It offers the possibility to use a
MAXVALUE, which represents a value that is always greater
than the largest possible value. It serves as the least upper
bound so it can catch all values that exceed the specific ranges.

IV. PARTITIONED INDEX

In the same way as tables, indexes can be divided into
partitions as well. It is possible to have partitioned tables
without partitioned indexes, but also to have a non-partitioned
table with partitioned indexes. Fig. 2 shows a non-partitioned
table with two types of indexes. The index on the left side is
partitioned into 3 partitions, and the index on the right side is
non-partitioned.

Fig. 2. Indexes of a non-partitioned table

Fig. 3 shows a table partitioned into 3 partitions related to
different months. Two different indexes are linked to it, the

partitioned index on the left side and the non-partitioned index
on the right side.

Fig. 3. Indexes of a partitioned table

An independently partitioned index is referred to as a
global index. A partitioned index automatically linked to a
table’s partitioning method is referred to as a local index.

A. Local partitioned index

A great availability is offered by a local partitioned index,
which is also easier to manage than other types of partitioned
indexes. All of its keys refer only to rows stored in a single
underlying table partition. It offers equipartitioning as each
partition of a local index is associated with exactly one
partition of the table. For this reason, the index partitions are
automatically kept synchronized with the table partitions, so
each table-index pair can become independent. It means they
are both added, dropped, or split in the same way. Any actions
making the data in one partition unavailable or invalid affect
only a single partition. A new partition cannot be explicitly
added to a local index. It can be added only when a new
partition is added to the underlying table as well. Similarly, a
partition cannot be explicitly dropped from a local index. It
can be dropped only when a partition from the underlying
table is dropped as well. Fig. 4 shows a structure of a local
partitioned index and its relationship to the table partitions.
The three top objects refer to index partitions and the bottom
three objects refer to table partitions [10], [15].

Fig. 4. Local partitioned index

A local index is created by specifying the LOCAL
keyword as follows:

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 302 --

CREATE INDEX index_name
ON table_name(attribute1[, attribute2, …]) LOCAL;

1) Local prefixed index: A local partitioning index is
prefixed if it is partitioned on a left prefix of the index
columns.

2) Local non-prefixed index: A local partitioning index
which is not partitioned on a left prefix is referred to as a non-
prefixed index. This type of index cannot be unique unless the
index key is a subset of the partitioning key.

B. Global partitioned index

The partitioning key independent from the table’s
partitioning method is making global partitioned indexes more
flexible. The fact that all rows in the underlying table can be
represented in the index is ensured by a partition bound called
MAXVALUE, which is higher than the highest partition of a
global index. Fig. 5 shows a structure of a global partitioned
index and its relationship to the table partitions. The three top
objects refer to index partitions and the bottom three objects
refer to table partitions. Thus, unlike a local partitioned index,
in this index, its partitions bind to different partitions of the
table [12].

Fig. 5. Global partitioned index

A global index is created by specifying the GLOBAL
keyword as follows:

 CREATE INDEX index_name
 ON table_name(attribute_name) GLOBAL

 PARTITION BY RANGE (attribute_name) (
 PARTITION partition1_name VALUES LESS THAN (x),

PARTITION partition2_name VALUES LESS THAN (y),
 …
PARTITION partitionN_name VALUES LESS THAN

 (MAXVALUE)
);

V. METHODOLOGY

Data access time characteristics have been obtained by
using Oracle 18c database system based on the relational
platform.

Experiment results were provided using Oracle Database
18c Express Edition Release 18.0.0.0.0 – Production Version
18.4.0.0.0. Parameters of the used computer are:

 Processor: Intel(R) Core(TM) i5-3317U; 1.70GHz
 Operation memory: 8GB
 HDD: 500GB

To compare the data access time, two tables were created.
Both tables had identical data and contained 1,000,000 rows
with 4 columns of Integer, Varchar2(30), Date, and Integer
data type. One table was created without partitions and the
other one was divided into 25 partitions according to the range
partitioning technique which was applied on the last integer
column storing data about percentage. It means that each
partition contained a range of 4 distinct percentage values.
Data were generated into partitions evenly, so each partition
had approximately 40,000 rows. A non-partitioned table was
created as follows:

CREATE TABLE table_not_partitioned
(id INT PRIMARY KEY,

 name VARCHAR2(30),
 dateB DATE,
 percents INT);

A table with 25 partitions was created as follows:

CREATE TABLE table_partitioned
(id INT PRIMARY KEY,

 name VARCHAR2(30),
 dateB DATE,
 percents INT)

 PARTITION BY RANGE (percents) (
 PARTITION p1 VALUES LESS THAN (5),

 PARTITION p2 VALUES LESS THAN (9),
 ...
 PARTITION p24 VALUES LESS THAN (97),
 PARTITION p25 VALUES LESS THAN (101)

);

Situations without created indexes were tested over each of
these two tables. After that, different types of indexes were
created for these tables as well. The different scenarios
concerned a non-partitioned and a partitioned index.

Partitioned indexes were created as global, local prefixed,
and local nonprefixed indexes. In the case of partitioned
indexes, the partitions were created in the same way as in the
tables, and thus they related to a percentage column that was
divided into 25 ranges. Seven executed scenarios are shown in
Table I. Each scenario indicates whether the table was
partitioned or not, and which type of index was created on the
table.

TABLE I. EXECUTED SCENARIOS

TABLE INDEX
1 nonpartitioned -
2 partitioned -
3 nonpartitioned partitioned (global)
4 nonpartitioned nonpartitioned
5 partitioned nonpartitioned
6 partitioned partitioned (local prefixed)
7 partitioned partitioned (local nonprefixed)

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 303 --

The global partitioned index in scenario no. 3 was created on
the attribute percents as follows:

 CREATE INDEX index_global_percents
 ON table_not_partitioned(percents) GLOBAL

 PARTITION BY RANGE (percents) (
 PARTITION p1 VALUES LESS THAN (5),
 PARTITION p2 VALUES LESS THAN (9),
 …
 PARTITION p24 VALUES LESS THAN (97),
 PARTITION p25 VALUES LESS THAN (MAXVALUE)
);

The non-partitioned index in scenarios no. 4 and no. 5 was
created in a similar way for both of the tables on the attribute
percents as follows:

CREATE INDEX index_percents_nonpartitioned
ON table_not_partitioned(percents);

The local prefixed partitioned index in scenario no. 6 is
partitioned on a left prefix of the index columns and was
created on the attribute percents as follows:

CREATE INDEX index_local_percents
ON table_partitioned(percents) LOCAL;

The local non-prefixed partitioned index in scenario no. 7 is
not partitioned on a left prefix of the index columns. It was
created on the attribute dateB and percents as follows:

CREATE INDEX index_local_percents
ON table_partitioned(dateB, percents) LOCAL;

VI. RESULTS

Data access times of executed seven scenarios are shown
in Table II in milliseconds. The left column represents the
number of accessed ranges.

When comparing scenarios no. 1 and no. 2 in which there
are tables without any indexes created, it can be concluded that
when accessing data related to successively from 1 to 10
partitions, the access time was significantly shorter for a
partitioned table. When selecting data for one partition, it was
only 4 milliseconds compared to 52 milliseconds. The data
access time of the partitioned table increased with the
increasing number of accessed partitions. There was a change
in access to 12 partitions. The partitioned table data access
time was 67 milliseconds, which was more than the non-
partitioned table data access time of 61 milliseconds. Thus, in
this situation, the number of 12 partitions represented the limit
when the partitioned table was no longer more advantageous
than the non-partitioned table in terms of data access time. A
comparison of scenarios no. 1 and no. 2 are shown in Fig. 6
and Fig.7.

TABLE II. DATA ACCESS TIMES OF 7 SCENARIOS

Fig. 6. Data Access Time – Scenarios 1, and 2

Fig. 7. Data Access Time – Scenarios 1, and 2 - Enlargement

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 304 --

Fig. 8 shows data access times of scenarios no. 1, no. 3,
and no. 4 concerning the table without partitions. Scenario no.
1, which was without any indexes, kept data access time
between 51 and 61 milliseconds, without major fluctuations.
Scenario no. 4, which concerned the nonpartitioned index, had
a much shorter time from the beginning. When accessing data
that would belong to one partition, the access time was only 6
milliseconds. With the increasing number of partitions that
would be accessed, the access time gradually increased to 8,
13, 16, 25, 33, and 59 milliseconds, and the access time to the
data in the range of 7 partitions was the same as in the scenario
no. 1, for 61 milliseconds. Subsequently, the access time
increased slightly from this limit. Scenario no. 3 started with
an access time of 5 milliseconds and had the lowest time in
most cases, up to access data that would cover 18 partitions.
After this limit, the most advantageous scenario was the one
without any indexes.

Fig. 8. Data Access Time – Scenarios 1, 3, and 4

The situations regarding the partitioned table are shown in
Fig. 9. Scenario no. 2, which was without any indexes, had the
lowest time in the first half of the cases, compared to scenarios
no. 5, no. 6, and no.7. Since the access to 11 partitions, the
access time has grown significantly, and since the access to 12
partitions, scenario no. 2 had the largest data access time.
Scenario no. 5, concerning the nonpartitioned index, had a
much smaller increase. Its access times ranged from 6 to 72
milliseconds. The only major growth in time was between
access to 6 and 7 partitions, where the time increased by 32
milliseconds to 60 milliseconds. Subsequently, the times did
not have such a large growth, they always increased by a
maximum of 3 milliseconds. Scenario no. 6, concerning the
local prefixed partitioned index, had access times to 1 to 22
partitions ranging from 6 to 62 milliseconds. Since access to
the 23 partitions, the time has increased very significantly,
reaching a time similar to that without any index, of more than
1060 milliseconds. Scenario no. 7, concerning the local
nonprefixed partitioned index, had very similar access times as
the nonpartitioned index scenario, in the same range of 6 to 72
milliseconds.

Fig. 9. Data Access Time – Scenarios 2, 5, 6, and 7

VII. CONCLUSION

The efficiency of data access is one of the most important
tasks in ensuring system performance. The amount of data is
constantly growing, and therefore it needs to be processed in
an efficient way. When using large amounts of data, great
emphasis is placed on data access time. Creating indexes,
partitions and their various combinations can bring significant
improvement of data access time in many situations.

In the experiments, the access times for the data in the
table with the created partitions and the table without any
partitions were compared in the DBS Oracle environment. We
tested several situations that differed in the type of indexes
created on both tables, such as non-partitioned, global
partitioned, local partitioned prefixed, and local partitioned
non-prefixed indexes.

The results showed that data access time differed a lot in
various scenarios. For the first ranges of selected data, the
worst access time was caused by using the non-partitioned
table with no indexes. Here, the access time was at the
beginning about 9-13 times worse than in the remaining
scenarios. However, from about half of the accessed ranges
had a significant slowdown in access time scenario with the
partitioned table with no indexes and it started to be about 10
times slower than a scenario with the non-partitioned table
with no indexes.

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 305 --

All scenarios in which partitioning, indexing, or their
combinations were used started at approximately the same
data access time of 4, 5, and 6 milliseconds. Regarding access
to data belonging to the first 11 partitions out of 25, the
scenario with the partitioned table with no indexes had the best
results. However, after this limit of 11 partitions, it
significantly became the slower scenario.

From the results of experiments, it can be deduced that the
use of partitioning, indexes, or their combinations can
significantly speed up data access time. However, with
frequent access to a large amount of data to which a large
number of partitions or index nodes are bound, the access time
is similar as in the scenario without partitions and indexes, or
in some situations, it may be even much worse.

Therefore, it is important to consider the appropriate
choice of partition and index types, depending on the
frequency and the volume of accessed data.

ACKNOWLEDGMENT

This publication is supported by the Grant system of the
University of Zilina.

REFERENCES
[1] B. Bryla, Oracle Database 12c The Complete Reference, Oracle

Press, 2013, ISBN 978-0071801751.
[2] D. K. Burleson, Oracle High-Performance SQL Tuning, Oracle Press,

2001, ISBN 9780072190588.
[3] S. Ceri, M. Negri, and G. Pelagatti, "Horizontal data partitioning in

database design", ACM SIGMOD international conference on
Management of data, 1982, pp. 128-136.

[4] R. Čerešňák, M. Kvet, "Comparison of query performance in
relational and non-relational databases", Transportation Research
Procedia, 2019, vol.40 (pp. 170-177), 2352-1465.

[5] J. Delplanque, A. Etien, N. Anquetil and O. Auverlot, "Relational
database schema evolution: An industrial case study", IEEE
International Conference on Software Maintenance and Evolution
ICSME 2018, pp. 635-644, 2018.

[6] M. Desai, R. Mehta, and D. Rana, "A Survey on Techniques for
Indexing and Hashing in Big Data", 2019, doi:
10.1109/CCAA.2018.8777454.

[7] G. Graefe, "Sorting And Indexing With Partitioned B-Trees." CIDR.
Vol. 3. 2003.

[8] T. Honishi, T. Satoh and U. Inoue, "An index structure for parallel
database processing", Second International Workshop on Research
Issues on Data Engineering: Transaction and Query Processing,
1992.

[9] J. Janech, M. Tavač, and M. Kvet, "Versioned database storage using
unitemporal relational database," 2019 IEEE 15th International
Scientific Conference on Informatics, Poprad, Slovakia, 2019, pp.
000031-000036, doi: 10.1109/Informatics47936.2019.9119269.

[10] D. Kuhn, S.R. Alapati, and B. Padfield, "Partitioned Indexes", 2016,
In: Expert Oracle Indexing and Access Paths. Apress, Berkeley, CA.
doi: 10.1007/978-1-4842-1984-3_6

[11] M. Kvet, "Relational Data Index Consolidation," 2021 28th
Conference of Open Innovations Association (FRUCT), Moscow,
Russia, 2021, pp. 215-221, doi:
10.23919/FRUCT50888.2021.9347614.

[12] M. Kvet and M. Kvet, "Relational Pre-indexing Layer Supervised by
the DB_index_consolidator Background Process," 2021 28th
Conference of Open Innovations Association (FRUCT), Moscow,
Russia, 2021, pp. 222-229, doi:
10.23919/FRUCT50888.2021.9347573.

[13] M. Kvet, V. Šalgová, M. Kvet, and K. Matiaško, "Master Index
Access as a Data Tuple and Block Locator," 2019 25th Conference of
Open Innovations Association (FRUCT), Helsinki, Finland, 2019, pp.
176-183, doi: 10.23919/FRUCT48121.2019.8981531.

[14] C. Qi, "On index-based query in SQL Server database", 2016 35th
Chinese Control Conference (CCC). doi:
10.1109/chicc.2016.7554868.

[15] M. Wang, M. Xiao, S. Peng, and G. Liu, "A hybrid index for
temporal big data", 2017 Future Generation Computer Systems, 72,
264–272. doi: 10.1016/j.future.2016.08.002

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 306 --

