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Abstract—Automatic discovery of various types of database
dependencies (functional, inclusion, matching, and others) is
a topic that has received a great deal of attention in the
recent years. The problem is formulated as following: having
an unexplored dataset, find all dependencies that hold on this
data. Such problem formulation arises in business and scientific
applications and is aimed at the discovery of patterns in data.

Metanome is a pioneering platform which was used to bench-
mark existing and develop new dependency discovery algorithms.
It is notable since it was the first attempt to unify all existing
discovery algorithms inside a single suite. However, it should
be considered a research prototype rather than a system ready
for industrial use. The core reason for this is the choice of the
implementation platform (Java) and the absence of optimizations.

In this paper we address the problem of high-performance
dependency discovery. We present Desbordante — a platform
that is intended to make the most of the available computational
resources and thus to be more suitable for industrial use.

Finally, we evaluate our system experimentally and pose a
number of research questions related to the obtained perfor-
mance and justify its necessity. More precisely we examine
1) whether the Java implementation is indeed worse than the
C++ one, 2) is it possible to use simple tricks to improve
Metanome’s performance, 3) what are the exact reasons behind
the performance gap, and 4) what are the user-facing benefits of
switching the implementations.

I. INTRODUCTION

Database dependencies [1] represent patterns contained

within the data. Their discovery has several major applica-

tions [2] such as data exploration, schema engineering, data

cleaning, query optimization, and data integration.

Automatic discovery of functional and other kinds of de-

pendencies Has received a great deal of attention in the recent

years. The problem is the following: having an unexplored

dataset (table), find all dependencies that hold on this data.

Dependency discovery is computationally-intensive: the state-

of-the-art algorithms take hours or days to finish, even for

megabyte-sized tables on server-class hardware [3].

Early dependency discovery algorithms were implemented

inside different prototypes, using different programming lan-

guages, and compared using different datasets and baselines.

To the best of our knowledge, there is only a single tool

that unites the results of all existing papers. Essentially, it

contains all algorithms implemented inside a single suite,

alongside with many benchmarks. Its authors used their pro-

totype to compare various existing algorithms [3]–[5] and to

develop and evaluate new ones [6]–[9]. This suite is called

Metanome [10] and it is implemented in Java.
Java has many well-known advantages, such as its relative

ease of learning, suitability for rapid application development,

a platform-agnostic computing environment, availability of

visualization libraries and UI frameworks and many more.
At the same time, Java possesses a number of no less

prominent drawbacks:

1) Given an equitable effort put into code, the resulting

performance of Java applications is worse than that of

C++, on average. This happens mostly due to JVM

overhead.

2) Java application performance can be unpredictable. Since

explicit memory management is not possible in Java,

programs rely on an automatic garbage collector, which

may be invoked at any time. Therefore, run times may

significantly differ even for consecutive invocations of

single-threaded programs. For this reason, in order to

obtain reliable benchmarking results, sophisticated ap-

proaches like Java Benchmark Harness [11] are used.

3) Java programs usually leave a higher memory footprint

than C++.

Finally, Java does not allow low-level optimizations, such

as vectorization via SIMD instructions. Currently, only auto

vectorization is available to Java programmers and it is not

reliable, e.g. has trouble vectorizing a simple loop [12].

Vector API [13] is another option to employ SIMD in Java.

However, it is still in the incubation phase and scheduled to

be included [14] in JDK 16 in March 2021. Aside from that,

the prospective performance of this feature compared to the

C++ one is still unclear.
Another possibility to access low-level optimization for Java

programmers is the JNI [15]. However, it is well-known [16],

[17] that it invokes a high overhead when switching be-

tween Java and native code. Dependency discovery algorithms

are data-intensive and thus, they will require a lot of such

switching in performance-critical parts implemented in native

languages. Therefore, this is also not an appropriate option.
Overall, the described inability to use low-level optimiza-

tions is a critical drawback for solving a high-performance

computing task.
Finally, dependency discovery algorithms are very complex

and frequently multi-threaded. Therefore, understanding their

asymptotic computational complexity is very hard, and of
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limited use. Instead, in order to assess them, prospective users

usually run an experimental study.

The Java implementation (Metanome) is sufficient to un-

derstand the relative performance of different algorithms.

However, for industrial applications it is necessary to know

their true limits to understand what datasets can be efficiently

mined. To address this, we have created Desbordante (meaning

“limitless” in Spanish) — a platform that is aimed to address

this drawback of Metanome. It is fully written in C++,

extendable and completely open-source [18].

In this paper we describe the proposed tool, its architecture,

and present an experimental study that justifies its usefulness.

To the best of our knowledge, Desbordante is the first tool

intended specifically for high-performance dependency discov-

ery.

Our experimental study consists of two parts:

implementation-related and algorithm-related. The first

part is focused on high-level implementation details of

both systems. We study their impact on run-time behavior

and resulting performance, and what are reasons behind it.

The second part addresses the user-facing benefits in terms

of improvement obtained by a specific algorithm. For this

purpose, we employ Pyro [8] — an algorithm for approximate

dependency discovery. Our choice is justified by the fact

that Pyro is a state-of-the-art AFD discovery algorithm. The

detailed list of research questions (RQs) that are addressed in

this paper is presented in Section III.

This paper is organized as follows. In Section II we provide

definitions of both regular and approximate functional depen-

dencies, present the taxonomy of FD mining algorithms and

briefly discuss them. In Section II-C we give a short overview

of the Metanome system. Next, in Sections III and IV we

discuss our experiment design and its outcomes. We conclude

this study with Section V.

II. BACKGROUND AND RELATED WORK

This section provides the reader with all of the necessary

background information: we introduce basic definitions of

database dependency theory, describe the taxonomy of FD

mining algorithms, and give a high-level overview of the

Metanome project.

A. Functional dependencies

All the following definitions are expressed using the mod-

ern notation derived from studies [6], [8], which is slightly

different from the classic [19], [20]. Nevertheless, the main

idea behind exact functional dependencies stays the same:

Definition 1: Given a relational schema R and an instance r
over R with attribute sets X,Y ⊂ R, we say that a functional

dependency X → Y holds iff for any t1, t2 ∈ r, the following

is true: if t1[X] = t2[X], then t1[Y ] = t2[Y ]. We call the

determinant set of attributes X the left-hand side (LHS) of

the FD, and the dependent set the right-hand side (RHS).

However, real data contains typos, missing values, and

noise. This results in scenarios when a FD can not be inferred,

but common sense or domain specific knowledge implies that

such a FD exists and has to be found. To address the problem

of dirty data, a special class of algorithms was developed:

Approximate FD mining algorithms (AFD). “Approximate”

here means that a fraction of rows is allowed to disagree on

RHS values if they agree on LHS. Thus, in these algorithms

the discovery process is controlled by the error parameter

emax, which is used as a threshold to determine whether an

AFD X → Y meets the condition on the maximum allowed

fraction of “broken” rows (i.e. e(X → Y ) ≤ emax) or not.

Definition 2: Given an instance r and an AFD candidate

X → Y , its error is calculated as [8]:

e(X → Y, r) =
|{(t1, t2) ∈ r2|t1[X] = t2[X] ∧ t1[Y ] �= t2[Y ]}|

|r|2 − |r|
AFD X → Y holds on r if e(X → Y, r) ≤ emax.

Note that setting emax = 0 reduces the AFD mining process

to FD.

B. FD mining algorithms taxonomy

Several dozen mining algorithms for different types of

database dependencies have been developed during the last

forty years. Each of them solves the discovery problem in

their own unique way. Nevertheless, they can be grouped by

one of the following fundamental approaches:

1) Algorithms based on a lattice-traversal approach repre-

sent dependency search space as a partially ordered set

(poset) of a N -element set (where N is the number of

attributes). In the literature, the Hasse diagram is used

to visualize such a search space [19], [21], [22]. The

algorithm iteratively traverses it, starting from the zeroth

level. First, it considers dependencies ∅ → A1 . . . AN .

Then it constructs the next level, containing dependency

candidates which are currently not minimal and need

to be verified. Candidate verification is performed via

intersection of position list indices (denoted by π(X)): it

is based on a fundamental lemma first described in [19].

A position list index is a data structure consisting of a list

of clusters. A single cluster is a list of rows containing the

same value. Next, in a successive manner, the algorithm

constructs poset levels until no more candidates can be

generated. The number of levels to visit and overall

algorithm complexity is dependent on N , which results in

a poor scalability in terms of the number of attributes [3].

2) Another approach to dependency candidate generation

is based on searching for attribute subsets that agree

on a certain number of tuples [23], [24]. Agree-sets are

constructed by performing pair-wise tuple comparisons,

which makes search space size dependent on the number

of table rows. As a part of a pruning strategy many

algorithms perform construction of difference-sets (i.e.

agree-sets complement) before running the actual can-

didate validation. These sets are used by an algorithm to

determine subsets of attributes that would likely be parts

of an LHS and RHS of a specific candidate dependency

and which are not.
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3) A hybrid approach is modern [6]. It has been proposed to

address the problem of poor column and row scalability

of existing approaches. Its authors suggest to divide the

mining process into two separate phases — one for

calculating candidate dependencies on a small subset of

data, and the other one for candidate validation on the

entire dataset. This approach had proved its effectiveness

not just in terms of performance, but also in the number

of algorithms which inherit its core idea. The approach

had already been extended to approximate dependencies

inference [8] and to dependency mining in dynamically

changing environments [7].

The first reference is the paper where Pyro — an al-

gorithm that we evaluate in the current study — was

originally presented. The second reference describes the

process that avoids full recalculation of the FD minimal

cover and allows to maintain it in an actual state in

environments where UPDATE, INSERT and DELETE

operations often occur. This new domain of algorithms

for incremental discovery looks especially promising if

FD mining is performed in the context of big data [25],

[26].

4) The last of the most prominent approaches is depen-

dency mining via approximation schemes [27] or sta-
tistical learning [28]. This approach is different from

the previous ones since it does not guarantee finding a

minimal cover of exact or approximate FDs. However, the

approach is worth mentioning since it contains methods

which have not been applied to the FD mining domain

until the most recent time.

The basic idea is to reduce the FD discovery to the prob-

lem that was already solved for more general structures.

For example, in [28] the authors develop a framework

which maps FD discovery to sparse regression problem

solving. Another study considers [29] FDs as undirected

structures that can be learned from data with the Graph-

ical Lasso algorithm.

C. Metanome

To the best of our knowledge, Metanome is currently the

only data profiling tool that provides its user with:

1) a framework for developing and testing dependency min-

ing algorithms,

2) support of various data types and DBMS connections,

3) a frontend web-service.

From a developer’s perspective, Metanome is convenient to

use. It specifies all necessary interfaces per each of the most

popular types of dependency mining algorithms a user might

want to implement — FD, AFD, ID, order dependency, unique

column combinations, etc. Metanome core classes implement

all data structures necessary for dependency discovery —

position list index (on top of Apache Lucene), agree-set, and

different types of nodes which can be used for search space

construction. Finally, a relation builder component allows

to avoid writing boilerplate code for tabular data reading

functionality.

For a data analyst, Metanome is a platform that can be

used for obtaining knowledge and insights about data. The

platform can process plain text files or can be asked to retrieve

data via a DBMS connector. Metanome’s algorithm library is

populated with discovery algorithms by simple drag-and-drop

of a jar file containing the algorithm implementation. After

data is processed, the tool maintains high-level statistics on

it, preserves the history of mining algorithms invocations, and

visualizes found dependencies as a sunburst chart.

D. Pyro

Pyro [8] is a state-of-the-art algorithm for mining ap-

proximate functional dependencies, which follows the hybrid
approach. It is worth mentioning that it finds not only AFDs,

but also AUCCs (approximate unique column combinations).

However, we will not consider AUCCs in our Pyro overview

due to two reasons:

1) this type of constraints is out of scope of our study, and,

2) any of the aforementioned processes can be applied to

AUCC mining in the same way as AFD.

As it was mentioned, the hybrid approach employs both

agree set and position list index as its core data structures.

Besides, Pyro maintains two auxiliary data structures: the

agree set sample cache and the PLI cache. It will be shown

that these data structures are very useful when Pyro estimates

errors of dependency candidates and performs their validation.

For now, we want to emphasize the importance of the

PLI cache that can be useful not just for the discovery

process performed by Pyro, but for any hybrid or lattice-

traversal algorithm which is based on a rather computationally

expensive PLI intersection operation. It is common that during

the verification phase intersection is performed many times on

the same sets of attributes. For example, in order to verify

X,Y → W and X,Y → Z dependencies, the calculation of

the π(XY ) intersection would likely be performed twice. To

make the process faster, authors of Pyro suggest to maintain

a prefix tree which contains results of partition intersection.

That is, before intersecting PLIs on a set of attributes, the

algorithm first checks trie whether this PLI had already been

calculated or not. Decision on caching a PLI follows a coin flip
strategy — each PLI has a 0.5 probability to be cached. More

sophisticated caching approaches were developed in [36], but

in the current study we use the default coin flip.

The Pyro discovery process itself is divided into two phases:

1) error assessment for AFD candidate hypothesizing;

2) sampling-based best-first search space traversal.
Dependency candidate error assessment is one of the most

expensive tasks for AFD mining algorithms. Pyro solves the

problem in the following way: instead of performing full error

calculation based on PLIs intersection, the algorithm estimates
the error first, and then extrapolates it to the whole rela-

tion. Only if the estimation satisfies the error hyperparameter

value emax, the algorithm performs targeted error calculation.
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TABLE I OVERVIEW OF THE EVALUATION
DATASETS

Dataset Source Rows Cols Size #FDs #NULLs

Adult uci [30] 32K 15 3.5 MB 78 0, 0%
BreastCancer uci [30] 500 30 118 KB 11835 0, 0%

CIPublicHighway data.sa.gov.au [31] 427K 18 27 MB 143 3.5M, 46.3%
EpicMeds epa [32] 1.3M 10 55 MB 17 280K, 2.2%
EpicVitals epa [32] 1.2M 7 33 MB 2 0, 0%
Iowa1KK mydata.iowa.gov [33] 1M 24 210 MB 1585 1M, 4.2%

LegacyPayors epa [32] 1.4M 4 21 MB 6 0, 0%
Neighbors100K SDSS [34] 100K 7 6.4 MB 15 0, 0%

SG Bioentry BioSQL [35] 184K 8 24 MB 19 184K, 11.1%

Estimation itself is based on comparisons of tuples subsets,

which makes the error assessment phase resemble the process

of candidate generation described in Section II-B, as it also

employs agree sets to derive sets of attributes on which subsets

of tuples agree. To make estimates more precise and unbiased

from small agree set samples, Pyro performs focused sampling.

The process is called focused because it is defined by two

conditions:

1) agree sets that are sampled must be supersets of some

given attribute set X , and

2) tuples that are sampled must co-occur in the same clusters

of π(X).

Agree set samples are stored in the corresponding cache,

which is used for retrieving a more appropriate agree set

sample when performing error estimates for specific attribute

sets.
Search space traversal is performed by Pyro in its own

unique way — using a separate-and-conquer strategy. For

each attribute X Pyro creates a search space which can be

considered as a fragment of a partially ordered set (poset

we mentioned in Section II-A) where all minimal AFDs of

Y → X format are located. Each iteration over the search

space is started from a launchpad — a single attribute at the

bottom level of poset with the smallest error estimate. Starting

to check candidates on a higher levels (dependencies with long

LHS), algorithm ascends until it finds minimal dependency

on its path. When the dependency is verified as minimal,

e.g., Y1, Y2, Y3, . . . , YN → X , Pyro trickles down to lower

poset levels to estimate the errors of the generalizations of

that minimal dependency, which are: Y2, Y3, . . . , YN → X ,

Y3, . . . , YN → X and so on. Each of them is a minimal

candidate now, so Pyro recursively trickles down until the

encountered candidate error estimate is larger than the error

hyperparameter emax. After the new candidates are checked

(verified), Pyro ends the iteration by checking the complement

of the generalizations. Pyro inspects unexplored search space

parts at the very end of traversal. The authors emphasize that

the strategy is sufficiently general and can be used for both

AFD and AUCC discovery.

III. EXPERIMENTAL DESIGN

A. Experimental setup
For our experiments we have selected a number of datasets

listed in Table I. In this table we list their important properties:

number of rows and columns, their size, the number of exact

functional dependencies, and the number of NULL values

contained in the table (and their share).

Currently, Desbordante supports two algorithms: Tane [19]

and Pyro [8]. In our experiments we consider only Pyro due

to the anticipated demand.

Experiments were run on a PC with the following hardware

specs: Intel(R) Core(TM) i5-7600K CPU (4 cores) @ 3.80GHz

16GB DDR4 2133MHz RAM, 2TB HDD WD20EZAZ,

as well as the following software: Pop! OS 20.10, 64-bit,

C++: gcc 10.2.0, Java: OpenJDK 64-bit Server VM 11.0.9.1,

GraalVM CE 21.0.0.

B. Evaluation metrics

Existing papers that evaluate dependency discovery algo-

rithms [3], [8] consider roughly the same set of metrics

concerning run times and memory usage. Every new algorithm

tries to minimize them, thus extending the boundaries of what

datasets can be processed.

In this study we are also interested in other metrics which

characterize the efficiency of the system and the algorithm:

• the LHS size of dependency;

• the number of outliers.

For FD discovery algorithms we calculate metrics as fol-

lows:

• for each language and dataset we perform 10 launches in

order to build 95% confidence intervals for run times and

memory metrics;

• the RNG seed was fixed for all experiments, except

RQ1, where a number of different (but same for both

implementations) seeds was used. The impact of the

RNG seed on algorithm performance is discussed in

Section IV-D;

• for large datasets we incrementally increase LHS size to

obtain the max possible value while run times memory

limits are satisfied.

C. Research questions

We consider two groups of research questions (RQs). The

first one aims to justify the need of creating a new system

and tries to explore the exact reasons why the performance of

Java-based implementation suffers.

• RQ1: Does the C++ implementation outperform Java in
terms of run-times and memory consumption metrics?
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Fig. 1. RQ1: performance comparison of Desbordante and Metanome

• RQ2: Are there any “straightforward” techniques that
will allow to bring the performance of the Java imple-
mentation closer to the C++ one? Here, straightforward

means that the user will tune the run time environment

and vary its parameters without touching the actual code.

• RQ3: What are the reasons behind the differences in these
metrics?

The second group is dedicated to understanding and quan-

tifying the benefits that we can get from moving to the C++

implementation.

• RQ4: What are the reasons that stand behind Java
runtime outliers? Is it possible to get rid of them? Can
we guarantee stable run times?

• RQ5: How the performance is impacted, if maxLHS
parameter is set?

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. RQ1: Does the C++ implementation outperform Java in
terms of run-times and memory consumption metrics?

For this RQ, we experimentally evaluate out-of-the-box

performance of Metanome and compare it with Desbordante’s.

For Metanome, we have selected the best possible set of

configuration options (see RQ2). At the same time, we have

not tuned Desbordante’s compile options, using only the “-

O3” parameter. The performance was studied using exact FD
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TABLE II RQ1: COMPARING THE DESBORDANTE AND METANOME IMPLEMENTATIONS (RUN

TIMES)

Implementation adult breast cancer CIPublicHighway EpicMeds EpicVitals Iowa1KK LegacyPayors Neighbors100K

Desbordante 8381 ± 154 34 ± 0 166342 ± 156446 24599 ± 873 2580 ± 33 22854 ± 566 385 ± 21 35 ± 3
Metanome 8177 ± 176 117 ± 2 210615 ± 198689 55680 ± 4346 3383 ± 103 27228 ± 318 875 ± 44 122 ± 8

TABLE III RQ1: COMPARING THE DESBORDANTE AND METANOME IMPLEMENTATIONS (MEMORY

CONSUMPTION)

Method adult breast cancer CIPublicHighway EpicMeds EpicVitals Iowa1KK LegacyPayors Neighbors100K

Desbordante, AVG 174.03 MB 567.57 KB 858.37 MB 248.44 MB 133.63 MB 495.58 MB 88.80 MB 9.65 MB
Desbordante, MAX 311.93 MB 1.28 MB 1.40 GB 306.35 MB 181.89 MB 673.27 MB 177.00 MB 22.35 MB

Metanome, AVG 281.62 MB 16.18 MB 999.29 MB 638.68 MB 193.33 MB 725.60 MB 268.34 MB 55.68 MB
Metanome, MAX 575.57 MB 24.49 MB 1.89 GB 1.18 GB 426.83 MB 1.12 GB 493.61 MB 109.99 MB

discovery with the Pyro algorithm (i.e., the error was set to

zero). The same algorithm was used in all subsequent RQs.

It is important to note that we have not exhausted the

tuning potential of the C++ implementation. This concerns

not only compile options, but data structures and libraries

as well. Currently, Desbordante uses default C++ and Boost

data structures, and we have not tuned their parameters.

Desbordante does not rely on custom memory management

libraries (allocators), but instead uses the C++ default. It is

well-known [37] that using a special allocator is a simple way

to improve performance of C++ programs.

The results of this experiment are presented in Figure 1.

Since datasets have very different run times, we have plotted

them using a logarithmic axis.

It can be seen that the C++ implementation (Desbordante)

is clearly superior to Java (Metanome) on all but two datasets.

The performance on “Adult” and “CIPublicHighway” datasets

is approximately the same, and their confidence intervals

heavily intersect. The obtained improvement ranged from

1.19 to 3.43 times, 2.12 on average. The exact numbers are

presented in Table II.

Turning to memory consumption, we have measured both

maximum and average memory consumption over the course

of application. The results are presented in Table III. In

terms of memory consumption, Desbordante is also superior

to Metanome on all datasets: the obtained improvement ranged

from 1.46 to 2.57 times, 1.88 on average (average consumption

over the course). Note that the results on the “breast cancer”

dataset were not taken into account due to the clear outlier

nature of the latter. The peak consumption ratios are usually

even higher.

B. RQ2: Are there any “straightforward” techniques that will
allow to bring the performance of the Java implementation
closer to the C++ one?

This RQ is dedicated to checking whether the performance

of Metanome can be improved using simple techniques that

do not require code modification. Java programs heavily

depend on run time specifics: many options may affect their

performance. Let us list the ones that we have identified and

tested in our experiments:

1) JDK versions: 11 and 15. We have considered these

versions since 11 is the latest LTS (Long-Term Support),

and 15 is the latest STS (Short-Term Support).

2) Compilation approach: JIT (Just-In-Time) compilation or

AOT (Ahead-Of-Time). For JIT compilation, the Hotspot

JVM was used and for AOT — GraalVM;

3) Compilation type: client, server or tiered compilation;

4) If tiered compilation is used, then parameters T3 and T4

can be varied;

5) Garbage collector: G1, MarkSweep, Parallel, Serial;

6) Maximum (and minimum) heap size;

The results of varying the JDK version are presented in

Table IV. We can see that:

• JDK choice barely affects performance in the majority of

scenarios.

• The only affected datasets are CIPublicHighway and

EpicMeds: the difference between JDK versions reaches

50% and 150% respectively. Having investigated (using

event counting with perf) the reasons of this behav-

ior, we found out that the culprit is the number of

native instructions, which is more than 3 times higher

for GraalVM. Interestingly, data-related events (cache

misses, TLB misses) are approximately the same for

both implementations. Such difference in the number of

instructions can be observed only on these two datasets.

Therefore, we can conclude that this is a code generation

anomaly of GraalVM.

• Another observation is the following: even on regular

datasets, the newer HotSpot JDK shows slightly worse

results, which can be explained by their purposes — one

being LTS and another STS.

• Finally, smaller datasets are less impacted.

Next, we have studied the effect of JDK compilation op-

tions. The results are presented in Table V. It is evident

that there are no large differences between them: at most,

10% of improvement is obtained. Additionally, in a lot of

cases confidence intervals overlap, therefore we can not make

reliable conclusions.
We have also tried to tinker with Client, Server, and

Tiered compilation options. The first two are essentially

different compilers (C1 and C2, respectively) [38] and
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TABLE IV RQ2: VARYING JDK VERSION

(JIT ONLY)

Method adult breast cancer CIPublicHighway EpicMeds EpicVitals Iowa1KK LegacyPayors Neighbors100K

HotSpot JDK 11 7642 ± 64 115 ± 2 41178 ± 220 51930 ± 4029 3329 ± 144 27318 ± 228 809 ± 32 152 ± 6
HotSpot JDK 15 7886 ± 62 114 ± 4 57174 ± 527 67583 ± 3318 3413 ± 55 27545 ± 472 879 ± 36 151 ± 5

GraalVM JDK 11 8888 ± 36 125 ± 4 46828 ± 620 162917 ± 177 5836 ± 60 25968 ± 1156 1082 ± 21 153 ± 9

TABLE V RQ2: VARYING JDK COMPILATION OPTIONS (HOTSPOT,
EXCEPT AOT)

Method adult breast cancer CIPublicHighway EpicMeds EpicVitals Iowa1KK LegacyPayors Neighbors100K

AOT (GraalVM) 8525 ± 39 119 ± 6 54108 ± 1329 163724 ± 385 5761 ± 121 27417 ± 1864 1105 ± 51 147 ± 5
Client 8229 ± 116 282 ± 2 44681 ± 597 45006 ± 1686 3138 ± 136 26602 ± 469 842 ± 17 233 ± 9
Server 8205 ± 52 282 ± 3 44691 ± 552 46962 ± 3588 3160 ± 154 27033 ± 320 848 ± 23 252 ± 11

Tiered (default) 7703 ± 126 114 ± 2 41527 ± 243 51261 ± 3480 3312 ± 116 27098 ± 345 822 ± 20 149 ± 5
T3=2K, T4=15K 8029 ± 78 174 ± 2 42747 ± 231 47883 ± 5175 3331 ± 146 28335 ± 210 887 ± 27 159 ± 8
T3=0.5K, T4=5K 7845 ± 140 120 ± 2 41660 ± 252 50770 ± 4484 3401 ± 104 27802 ± 617 821 ± 32 153 ± 7
T3=6K, T4=30K 7953 ± 89 176 ± 2 42560 ± 339 47740 ± 5113 3389 ± 144 27859 ± 293 892 ± 26 162 ± 11

TABLE VI RQ2: VARYING GARBAGE

COLLECTOR

Method adult breast cancer CIPublicHighway EpicMeds EpicVitals Iowa1KK LegacyPayors Neighbors100K

G1 7684 ± 114 113 ± 3 41635 ± 317 50468 ± 4065 3359 ± 126 26352 ± 485 818 ± 15 150 ± 9
MarkSweep 7717 ± 88 120 ± 4 42226 ± 504 66501 ± 2543 3513 ± 58 26447 ± 318 873 ± 8 143 ± 5

Parallel 7723 ± 89 114 ± 2 42448 ± 372 56927 ± 344 3291 ± 36 25829 ± 265 779 ± 17 139 ± 3
Serial 7911 ± 200 122 ± 23 43022 ± 922 55055 ± 2945 3390 ± 80 25814 ± 586 845 ± 15 148 ± 6

TABLE VII RQ2: VARYING

HEAP SIZE

Method adult breast cancer CIPublicHighway EpicMeds EpicVitals Iowa1KK LegacyPayors Neighbors100K

Xms256 7972 ± 85 113 ± 3 ML 53301 ± 3989 3392 ± 87 ML 823 ± 27 150 ± 7
Xms512 7502 ± 45 128 ± 4 ML 54054 ± 4278 3207 ± 94 27343 ± 272 818 ± 35 147 ± 7

Xms1024 7483 ± 114 119 ± 3 41149 ± 436 53099 ± 4206 3265 ± 53 26026 ± 278 835 ± 40 139 ± 7
Xms2048 7639 ± 115 120 ± 4 41022 ± 267 50358 ± 4390 3290 ± 124 24889 ± 191 830 ± 25 149 ± 4

the third one is an option that allows to select a com-

piler on a per-method basis. This option is guided by a

heuristic that is roughly an invocation counter that cools

down over time. This counter has two thresholds which

we name T3 and T4 (“-XX:Tier3InvocationThreshold” and

“-XX:Tier4InvocationThreshold” respectively). If the first

threshold has been reached, then the C1 compiler is run. Next,

if the second is reached, then the C2 is used to compile the

method. The results that are presented in Table V demonstrate

that Ahead-Of-Time compilation is an unreliable choice which

may be suitable only for tiny datasets and yet it fails to beat

the JIT approach. Next, using only Client or Server compiler

is also a poor choice. Overall, JIT compilation that comes out-

of-the-box (Tiered with T3=200, T4=5000) appears to be the

best option.

The next option package concerned the impact of the

garbage collector. It can be observed (see Table VI) that for

regular datasets there is no real difference since the confidence

intervals intersect in a large number of cases. The default

option — ParallelGC — looks like a decent, safe choice.

Next, the effects of the “Xms” option are presented in

Table VII. It can be seen that having more memory at the

start improves performance on large datasets (see Table III).
Finally, we can conclude that it is not possible to improve

performance of Metanome using “straightforward” techniques,

i.e. by tinkering with run time options or switching to another

JVM. Additionally, we can recommend to utilize default

options and the LTS JDK when using Metanome.

C. RQ3: What are the reasons behind the differences in these
metrics?

Let us attempt to address why exactly Desbordante is faster

than Metanome. First of all, Desbordante uses less memory,

thus probably requiring fewer allocations (see Table III). Sec-

ond, we have decided to check the number of various hardware

and software events, like cache misses and page faults. For

this, we run perf both for Desbordante and Metanome. The

results are displayed in Table VIII. For the presentation rea-

sons we have included the performance improvement ratio of

Desbordante over Metanome as the first line. It was calculated

using the data taken from Table II. The next lines contain

event statistics, which were counted for Desbordante (D) and

Metanome (M) for each of the considered datasets.
We can divide our datasets into two groups: high-

improvement and low to no improvement. The former contains
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TABLE VIII RQ3:
VARIOUS EVENTS

Event P breast cancer LegacyPayors adult EpicVitals Iowa1KK Neighbors100K CIPublicHighway EpicMeds

improvement — 3.44 2.27 0.98 1.31 1.19 3.49 1.34 2.26

instructions
D
M

368.98M
4.80G

7.59G
37.24G

52.15G
106.32G

15.05G
53.70G

130.64G
275.52G

1.18G
12.22G

199.43G
489.63G

48.67G
590.22G

L1-dcache-load-misses
D
M

1.75M
94.27M

131.21M
468.57M

716.73M
1.29G

742.94M
975.52M

3.56G
4.07G

10.96M
155.90M

2.65G
6.10G

17.26G
17.24G

L1-icache-load-misses
D
M

8.72M
89.09M

2.92M
113.13M

73.72M
258.55M

3.19M
131.81M

49.65M
267.78M

1.01M
89.57M

34.61M
265.14M

13.47M
186.29M

L2-misses
D
M

2.45M
139.69M

165.54M
565.78M

662.08M
1.42G

786.95M
1.15G

6.28G
7.43G

14.41M
189.89M

3.45G
6.38G

9.37G
4.64G

LLC-load-misses
D
M

11.53K
1.97M

13.12M
16.47M

8.92M
32.46M

26.77M
34.33M

114.54M
217.43M

761.36K
4.26M

492.79M
879.14M

77.43M
94.71M

LLC-store-misses
D
M

32.19K
2.66M

28.14M
31.22M

6.73M
65.53M

10.62M
35.72M

76.16M
207.50M

746.36K
6.92M

105.85M
263.19M

19.45M
70.00M

cache-misses
D
M

203.48K
31.56M

117.83M
255.98M

105.77M
527.59M

154.55M
332.53M

877.17M
2.05G

6.96M
64.09M

1.95G
4.82G

531.16M
918.86M

branch-instructions
D
M

79.17M
838.41M

1.47G
7.13G

10.77G
18.62G

3.07G
11.99G

26.09G
47.91G

253.11M
2.24G

40.97G
88.28G

10.08G
170.86G

branch-misses
D
M

947.56K
37.00M

8.64M
153.30M

186.83M
362.65M

29.47M
157.66M

358.19M
832.07M

1.60M
59.18M

272.52M
493.29M

143.19M
393.31M

context-switches
D
M

16.00
2.50K

106.00
3.48K

760.00
4.23K

207.00
3.50K

5.34K
11.36K

3.00
2.68K

243.00
13.90K

3.17K
6.17K

cpu-migrations
D
M

0.00
119.00

0.00
343.00

1.00
286.00

0.00
273.00

0.00
1.24K

0.00
217.00

0.00
1.46K

0.00
477.00

dTLB-load-misses
D
M

5.31K
827.63K

5.75M
15.00M

3.13M
9.44M

16.45M
18.90M

76.73M
91.24M

328.80K
1.61M

504.91M
839.22M

36.52M
39.69M

iTLB-load-misses
D
M

3.05K
608.40K

137.62K
1.76M

673.54K
3.09M

187.71K
2.09M

1.46M
3.96M

23.64K
790.17K

1.44M
4.59M

447.86K
2.62M

page-faults
D
M

508.00
17.89K

65.19K
234.75K

90.31K
302.52K

67.32K
237.15K

269.40K
379.81K

7.60K
46.43K

365.63K
550.19K

123.22K
362.13K

TABLE IX RQ3: VARYING GCC
OPTIMIZATION LEVEL

Method adult breast cancer CIPublicHighway EpicMeds EpicVitals Iowa1KK LegacyPayors Neighbors100K

O0 73702 ± 177 258 ± 2 420799 ± 672 73522 ± 99 14214 ± 21 220619 ± 85 2483 ± 8 589 ± 0
O1 8805 ± 7 37 ± 0 47053 ± 96 25500 ± 70 2758 ± 13 25439 ± 65 397 ± 0 54 ± 0
O2 8319 ± 9 37 ± 0 42809 ± 61 24952 ± 44 2565 ± 8 23755 ± 42 364 ± 2 48 ± 0
O3 8209 ± 28 36 ± 0 42897 ± 71 24799 ± 101 2567 ± 8 23169 ± 43 363 ± 1 47 ± 0

EpicMeds, LegacyPayors, Neighbors, and breast cancer. The

latter consists of adult, Iowa1KK, and EpicVitals. One can

see that there is no single factor which can be used to predict

the resulting performance improvement. Instead, one can note

several performance-affecting factors:

1) The most important one is the number of instructions.

Recall RQ2, where close examination revealed that the

number of instructions directly affected the performance

of Metanome. However, as we can see from this table, the

number of instructions does not translate into improve-

ment directly. For example, adult and Iowa1KK datasets

have roughly the same ratio of instructions, but show

different improvement. However, if this ratio is at least

5, then there is a noticeable speedup.

2) The next factors are L1/L2/L3 cache misses, both for data

and instructions. Adult and Iowa1KK datasets are among

the lowest L1 data cache miss ratio in the whole dataset

collecion. At the same time we can see that adult has

worse or the same cache miss ratio statistics over the

whole cache hierarchy than Iowa1KK. This fact suggests

that there is another factor that defines the performance.

3) Number of branch instructions and branch misses. First

of all, one can note that branching instructions make up

about 20% total, regardless of dataset and implementa-

tion. Therefore, similarly to the overall instruction num-

ber, the number of branching instructions is important as

well.

Turning to branch misses, one can say that they are

much more important. The table shows that Desbordante

improves by 19% on Iowa1KK in terms of the number

of branch misses. Given the fact that other listed events

have better or comparable statistics for the adult dataset,

we conclude that the number of branch misses is also one

of the defining factors.

Some final remarks:

1) CPU migrations and context switches. Metanome, being a

Java program, is a multi-threaded application. Therefore,

it is prone to CPU migrations which may happen due

to a thread waking up, for example. These operations

are much more costly than cache misses and therefore
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they may create a performance bottleneck for Metanome.

It will be an interesting future work direction to study

its effects, for example, by attaching Metanome to a

particular core. However, the outcome is unclear since

such an approach will restrict garbage collection and the

JIT compilation process.

2) Moving to C++ drastically reduces the number of TLB

misses, sometimes by several orders of magnitude. How-

ever, adult and Iowa1KK show that they are less impor-

tant that the reduction of branch misses.

3) The number of page faults is also reduced for Desbor-

dante. However, its contribution is unclear on this step,

since at the moment Desbordante is not optimized at all,

and page faults are likely shadowed by cache and TLB

misses.

We have also separately checked the garbage collection

time. For all datasets, this overhead amounted for 0.5%–2%

of the overall run time.

Finally, our guess was the impact of the C++ code optimizer.

To check this, we have re-run our experiments with all

four available compilation options that control code optimizer

aggressiveness. The “-O0” is the default optimization level

that g++ offers. It has the fastest compile time, and is used

to generate an executable for the “debug” mode, thus not

optimizing code at all. The next options “-O1”, “-O2”, and “-

O3” extend compilation time and produce increasingly faster

binaries. Table IX demonstrates that the default optimization

level is almost ten times slower than any of the alternatives,

and it also loses to Metanome. Increasing the optimization

level leads to speed up of the executable. Switching from “-

O1” to “-O2” adds 10% to performance on some datasets.

However, increasing the level further does not add any im-

provement. It is also interesting to observe that performance

improves over all datasets relatively uniformly.

D. RQ4: What are the reasons that stand behind Java runtime
outliers? Is it possible to get rid of them? Can we guarantee
stable run times?

During the early stages of this project, we have noticed that

the confidence intervals in the preliminary versions of Figure 1

were abnormally large. Having looked into the data itself, we

have found out that results sometimes vary up to 20 times.

Running our experiments, we have ensured a “clean” en-

vironment: freshly-booted systems, no extra processes run,

system updates turned off, etc. This was done due to three

reasons:

1) First of all, we need to ensure the fairness of comparisons.

A sudden spike in load may impact the performance of

the currently tested implementation and lead to unreliable

conclusions.

2) Next, we need to make understanding implementation

behavior easier by eliminating external factors to the

maximum possible extent.

3) Finally, such a “clean” environment reflects the real

use-case scenario, since the FD discovery task is high-

performance. Therefore, it is reasonable to run it on

a dedicated system, allocating maximum computational

resources.

Therefore, interference of an outside process had nothing to

do with such variability of the obtained results. An extensive

study has revealed several other factors:

1) First of all, Pyro, as well as many other FD discovery

algorithms, is RNG-sensitive. Such algorithms rely on

random sampling which is used to control the discovery

process. Therefore, if an algorithm samples an ill-fitting

data fragment, it may lead to bad choices and the resulting

performance may be low. Our experiments demonstrate

that such choices have a significant on performance:

it may differ up to ten times. Therefore, in order to

run fair experiments, we had to ensure that random

number sequences are the same. For this, we implemented

custom random number generators in both Metanome and

Desbordante.

2) The next issue that we noticed is the change in the CPU

frequency during program runs. Having investigated the

issue closer, we found out that modern CPUs adjust [39]

their frequency depending on the load. Therefore, we had

to address this issue via locking the CPU frequency. For

this, we have used the cpufreq-set command for each

core.

3) Finally, we have noticed that if a table has a large number

of NULL values (see Table I) it also negatively impacts the

stability of results. NULLs force Pyro to resample data.

Having eliminated the first two of these issues, we have

obtained the current confidence intervals. The third issue,

being a data quality problem, was left as is. At the same

time, our experiments demonstrate that it seriously impacts

the stability of the run times. For example, consider CIPub-

licHighway, which has 46% of NULLs (see Table I). For both

implementations this leads to almost two orders of magnitude

result variability.

E. RQ5: How is the performance impacted if maxLHS param-
eter is set?

Almost all dependency discovery algorithms can be param-

eterized by the maximum desired size of the left hand side

(LHS) of dependency. In this case, the algorithm ceases lattice

traversal early, thus saving time. It allows to mine a subset of

all dependencies on slower systems.
In this experiment, we have studied the performance of Des-

bordante and Metanome in such scenarios. For this, we have

set a memory limit of 1GB (using the ulimit command)

and run a series of experiments while increasing the LHS

parameter. Tables X and XI describe the results. First of all,

we can see that our datasets can be classified into three groups:

1) Adult: run time grows with increasing LHS;

2) EpicVitals, LegacyPayors: run times rapidly grow, then

stabilize;

3) CIPublicHighway, Iowa1KK: heavy datasets that run into

the memory limit fast;

4) SG Bioentry: this type has a “hump” at the start which

then stabilizes.
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TABLE X RQ5: VARYING MAXLHS, DESBORDANTE,
CPU TIME

maxLHS adult CIPublicHighway EpicVitals Iowa1KK LegacyPayors SG Bioentry

1 119 762 1458 4265 417 61
2 740 5789 2554 19073 550 171
3 2587 ML 2270 29707 372 216
4 5694 ML 2672 28802 372 228
5 9876 ML 2631 25629 369 100

10 8368 ML 2671 23498 369 100
100 8331 ML 2676 23678 370 99

TABLE XI RQ5: VARYING MAXLHS, METANOME,
CPU TIME

maxLHS adult CIPublicHighway EpicVitals Iowa1KK LegacyPayors SG Bioentry

1 194 737 1652 4841 617 203
2 923 6276 3363 21875 960 344
3 2300 ML 3051 36150 768 507
4 4990 ML 2979 ML 936 419
5 9243 ML 3078 31186 848 253

10 8541 ML 3023 28998 785 301
100 8257 ML 2939 28713 795 252

Such behavior is the property of the algorithm — its

sampling and lattice traversal policy which depend on the exact

table that it works with.

Regarding the performance of Desbordante and Metanome,

one can make the following assumptions based on these tables:

• For most individual values of maxLHS, Desbordante

offers either the same or better performance than

Metanome.

• If the overall performance (see Table IV) is the same for

both implementations, it continues to be the same even for

individual values of maxLHS. This fact looks promising

for understanding the reasons standing behind such ties.

• In some cases Desbordante can finish the task without

hitting the memory limit (IOWA1KK, maxLHS=4).

V. CONCLUSION

In this paper we have presented Desbordante — the first

tool intended specifically for high-performance dependency

discovery. It is written completely in C++, extendable, and

fully open-source.

Experimental evaluation has demonstrated that our tool

provides the superior speed of dependency discovery (2x on

average), lower memory requirements (almost 2x on average),

and in general pushes the limits in terms of datasets that can

be processed. At the same time, its tuning potential is not

yet exhausted: we have not employed custom data structures

and libraries, custom memory managers, special compilation

options, and we have not tried SIMD-enabled algorithms.
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