
The Minutovka – a Word Typing Web Game for
Obtaining Typos to Create an Error Corpus

Štefan Toth, Michal Ďuračík, Patrik Hrkút, Matej Meško
University of Žilina

Žilina, Slovakia
{stefan.toth, michal.duracik, patrik.hrkut, matej.mesko}@fri.uniza.sk

Abstract— The paper describes the web application of a simple

typing game, which we designed and implemented mainly to obtain
typos and create an error corpus. We created the game for the
Slovak language, as we lacked such data. However, it could be used
for languages other than Slovak. We called it Minutovka (in
English “One minute game”) because we set the maximum
duration of the game time to one minute. During this time, a player
must rewrite the words from the randomly displayed sentences as
quickly as possible and with as few errors as possible. On the one
hand, the player is motivated to get the highest score and beat
other players in the daily, weekly, or overall rankings, while
improving his typing on the keyboard. On the other hand, our
motivation was to obtain data on how users write and especially
what typos and errors they make during the transcription of the
text. In this paper, we describe this game from the design to the
implementation, including issues that have occurred during the
operation of the game. We also designed fraud protection and
implemented it with the proposed hacker score. At the end, we
evaluate and visualize all the obtained data, which we store in the
document-based database MongoDB.

I. INTRODUCTION
People make various mistakes when typing text on a

computer, which is mainly due to inattention, fast typing on a
keyboard or even ignorance of certain spelling rules in the given
language. Currently, most common text editors include a spell
checker that can help the user find and correct certain errors. For
the world's most widely used languages, such as English, these
editors and other text-correction tools are very well-developed.
Unfortunately, for the Slovak language spoken by 7.23 million
people in the world [1], spell checking is not as perfect as for the
English language. The reason is the slight complexity of Slovak
grammar, many exceptions to the rules of spelling and a little
attention from scientists and programmers. Therefore, currently
editors such as Microsoft Word or OpenOffice / LibreOffice still
contain only a simple spelling checker based on a dictionary in
Slovak.

While dealing with problems in the field of natural language
processing, we found that it would be appropriate to have an
error corpus. Thanks to it, we could generate various real user
errors for input text data for training machine learning
algorithms and artificial intelligence. For example, in the case of
a text correction problem, it would be possible to train the system
with such data to suggest corrections of erroneous words. In the
case of other tasks, it would be possible to train the system to
ignore such erroneous data and to be able to process it correctly.

Since we lacked such typos data in the Slovak language, we
decided to obtain them in our own way by creating a simple

typing game based on web technologies, which we will focus on
in this article. We called it by the Slovak abbreviated name
Minutovka, which means one minute game. In this following
chapters, we describe it from design to implementation, along
with the data we obtained using it.

II. CURRENT STATE AND RELATED WORK
During analysis of the current state, we found that the idea of

creating a game to obtain typos was dealt with by several
authors, but neither publication has been focused on the Slovak
language. Rodrigues and Rytting published their article
describing the typing race game as a method to create spelling
error corpora [2]. The game was played by 251 participating
players. Each of the players had to retype one of 100 words
which have been shown sequentially. Overall, authors analyzed
15,300 words from 153 native English speaker participants.
4.65% of words contained mistakes.

Another word typing games were created by Tachibana and
Komachi [3]. They developed two word-typing games for
analysis of English spelling mistakes. The first game (common
word-typing game) was played by 7 and the second game
(correctable word-typing game) by 19 students of computer
science. Authors collected and analyzed 26 192 words.

Other games have been created for fun or learning, such as
typing game for Tibetan words by Ga and Jun [4], who
implemented a learning tool for Tibetan learners as well as a
teaching tool for teachers. Also, for Taiwanese students learning
English it was proposed game-based learning framework for
typing games by Wang et al. [5]. Henze et al. [6] developed a
typing game for observational and experimental investigation of
typing behavior using virtual keyboards on smartphones.
Another game for mobile devices equipped with touch screens
is TypeJump video game by Costagliola et al. [7], which helps
users to learn the KeyScretch text entry method.

There are several typing games on the Internet, especially for
people to improve their keyboard typing or for having fun. The
first example of the typing game is the Typing of the Dead,
which is a 3D videogame produced by Sega [8]. A new version
of this game called the Typing of the Dead: Overkill game is
currently available in [9] and [10] released in 2013. The main
goal of the game is to type correct words to kill zombie hordes.
Another game is the TypeRacer [11], which is a simple
multiplayer typing game released in 2008. Other example of the
modern game is ZType [12], which is a galactic keyboarding
adventure game. More typing free games can be found on the
websites [13], [14], [15] and [16]. For example, the website [13]

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

contains beautiful simple 2D HTML games such as the
Keyboard Jump, Keyboard Ninja, Zombie Defender, and many
others.

III. IDEA AND DESIGN OF THE GAME
We tried to design the web application of the game as simply

as possible, as can be seen in Fig. 1. We have placed brief
information about the game and the rules on the main page.
Immediately below it is the dominant part containing the text
composed of randomly generated sentences, which must be
sequentially rewritten word by word into the input text field
within one minute. The time starts to count down as soon as the
player presses the first letter on the keyboard. If the player does
not like the generated sentences or starts to make a lot of
mistakes, he has the option to reset the game by pressing the Try
again button, which will generate new sentences and set the
timer to the original 60 seconds.

Fig. 1. The main web page of the Minutovka game

During the game, the current word is highlighted in bold, and
if it is rewritten correctly by the player, it appears in green color.
If it was rewritten incorrectly, it is displayed in red. To correct a
currently written word, the player can only overwrite it without
pressing the Space bar or the Enter key. If he presses these keys,
the typed word in the input field is automatically recorded, and
he is moved to the next word.

To make the game not too long and boring, we chose a time
of one minute (60 seconds) during which it is necessary to
rewrite the highlighted text exactly as it is appeared, i.e., in
uppercase or lowercase, accented and punctuated. The goal for
the player is to get the highest score – the more correct word he
correctly rewrites, the higher score he gets.

At the end of the game, the player receives information about
the overall score, the number of correctly and incorrectly
transcribed words, and he can see, where he made mistakes.
Also, he has the option to save his score to the Top 100 Players
list. He needs only to enter a nickname and press the Save button.
Besides, we offer him the opportunity to fill in a very brief
questionnaire.

To support competition among players, we also implement a
ranking of the top 100 players by the day, week, and overall
(Fig. 2). In addition to the global scoreboard, we also provide the

option to play a game in a group that displays the score in a
separate table. We assume that this could stimulate competition.
This prevents players to get demotivated if they do not score in
the top 100 players. He can invite his teammates and compare
himself with them by playing the game in a group. For this
purpose, we create an option to join a group game with a unique
name. If any other player joins this group, his score will be
displayed in this local group ranking in addition to the global
score ranking.

Fig. 2. Global scoreboard (rank, nickname, scores, transcribed word count, date
and time)

The created game is publicly available via the URL address
https://minutovka.fri.uniza.sk. We let the game be played by our
students at the faculty and by many people as part of promotional
events at our university. Thanks to this, we gradually obtained
the data that we describe at the end of this article.

IV. IMPLEMENTATION
The game was implemented as a web application in C # using

the ASP.NET Core framework. The application consists of the
following parts:

 Database
 Application server
 Front-end module

The individual parts and their interconnection will be
described in the following chapters. A docker is used for
application deployment.

A. Database layer
We considered various types of databases, from the most

used SQL [17] to NoSQL [18] databases. Finally, we decided to
use the NoSQL document-based database MongoDB, which we
use as a database server. Among its main advantages, compared
to commonly used relational databases in web applications, is
the simple possibility of storing structured documents.

The application itself does not need to store many entities for
its operation. The application uses the following document
collections:

 GameResult
 Score
 GameToken
 CampaignVisitor

Brief information
about the game

Text to be
rewritten

Input field in which the player enters the word Try again button

Countdown timer

Created group

Scoreboard either in globally or in a group

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 367 --

The CampaignVisitor entity (Fig. 3) is used to track visitors
based on campaigns. The application allows us to create a special
URL for sharing, e.g., on social networks. After visiting the site
via this URL, a unique visitor identifier is generated, which is
then stored in cookies. This identifier is then stored together with
the results. The structure of this entity is as follows:
 KEY │ COUNT │ %
──
 analyzed documents │ 207 │ 100.0
 │ │
 _id -> binData │ 207 │ 100.0
 Campaign -> string │ 207 │ 100.0
 PersonIdentification -> string │ 207 │ 100.0
 Visit -> date │ 207 │ 100.0
Fig. 3. The structure of the CampaignVisitor collection

The GameToken entity (Fig. 4) is used to uniquely identify
the game. When text for the game is created, it is saved together
with the timestamp of the game in the database. This token is
only intended to protect against gaming cheating, which will be
described in the following chapters. After the end of the game, it
is removed from the database. The structure of the entity is
shown in the Fig. 4:
 KEY │ COUNT │ %
──
 analyzed documents │ 10529 │ 100.0
 │ │
 _id -> binData │ 10530 │ 100.0
 Created -> date │ 10530 │ 100.0
 IPAddress -> string │ 10530 │ 100.0
 PersonIdentification -> string │ 10530 │ 100.0
 Words -> array │ 3681 │ 35.0
 └╴[array item] -> string │ 73620 │
Fig. 4. The structure of the GameToken collection

These two entities are only auxiliary, but the most important
are the Score (Fig. 5) and GameResult (Fig. 6) entities. In fact,
these entities could be merged into one, but since we also needed
to collect data from failed attempts, the GameResult entity
contains the experiment data used to evaluate the typos. The
Score entity is created only after the end of the experiment. Its
structure is shown in the Fig. 5. As we can see, the entity Score
contains the reference to GameResult entity (GameId), which
represents the document ID from the GameResult collection. It
can also contain a player - if he fills in at least the nickname. If
it fills in the contact email address or whether it uses typewriting,
it is also stored in the Player object. It also contains calculated
statistics, such as the number of words per minute, respectively
the value of the score, IP address, date, and time of the game.
The last information we can find here is the output of the anti-
cheater analysis.

From the point of view of typo analysis, the most important
entity is GameResult shown in Fig. 6. The entity contains an ID,
a player identification, and a list of player answers. These
answers are a collection of words that the player has transcribed.
For each word, we record the original word - what the player had
to write (Word), what the player wrote (PlayerWord) and a list
of actions that the player took when writing the word
(AnswerParts). This list of actions contains information about
the last state of the written word (Word), the time in milliseconds
since the beginning of the spelling of the word (TimeStamp), the

type of event (Trigger) and the data associated with the event
(Data). A more detailed description of the event will be given in
the following chapters.
 KEY │ COUNT │ %
──
 analyzed documents │ 7257 │ 100.0
 │ │
 _id -> binData │ 7257 │ 100.0
 GameId -> binData │ 7257 │ 100.0
 GameKey │ 7257 │ 100.0
 │ -> null │ 7136 │ 98.3
 └╴-> string │ 121 │ 1.7
 HackerReason │ 6096 │ 84.0
 │ -> null │ 5237 │ 85.9
 └╴-> string │ 859 │ 14.1
 IpAddress -> string │ 6936 │ 95.6
 PlayedAt -> date │ 6936 │ 95.6
 Player │ 7256 │ 100.0
 │ -> null │ 5401 │ 74.4
 │ -> object │ 1855 │ 25.6
 ├╴Email │ 1855 │ 100.0
 │ │ -> null │ 1761 │ 94.9
 │ └╴-> string │ 94 │ 5.1
 ├╴Nickname -> string │ 1855 │ 100.0
 └╴Typewriting │ 1578 │ 85.1
 │ -> null │ 534 │ 33.8
 └╴-> bool │ 1044 │ 66.2
 PossibleHacker -> bool │ 6096 │ 84.0
 UserAgent -> string │ 6585 │ 90.7
 Value -> int │ 7257 │ 100.0
 Visible -> bool │ 6933 │ 95.5
 Wpm -> int │ 7257 │ 100.0
 WpmCorrect -> int │ 7257 │ 100.0
Fig. 5. The structure of the Score collection

 KEY │ COUNT │ %
──
 analyzed documents │ 13592 │ 100.0
 │ │
 _id -> binData │ 13592 │ 100.0
 Answers -> array │ 13592 │ 100.0
 ├╴[array item] -> object │ 141846 │
 │ ├╴AnswerParts -> array │ 141846 │ 100.0
 │ │ ├╴[array item] -> object │ 942637 │
 │ │ │ ├╴Data │ 942637 │ 100.0
 │ │ │ │ │ -> null │ 414 │ 0.0
 │ │ │ │ └╴-> string │ 942223 │ 100.0
 │ │ │ ├╴TimeStamp -> int │ 942637 │ 100.0
 │ │ │ ├╴Trigger -> string │ 942637 │ 100.0
 │ │ └─┴╴Word -> string │ 942637 │ 100.0
 │ ├╴Duration -> int │ 141846 │ 100.0
 │ ├╴PlayerWord -> string │ 141846 │ 100.0
 └─┴╴Word -> string │ 141846 │ 100.0
 PersonIdentification │ 12547 │ 92.3
 │ -> null │ 52 │ 0.4
 └╴-> string │ 12495 │ 99.6
Fig. 6. The structure of the GameResult collection

Based on this record, we can easily determine whether the
player spelled the word correctly, we can determine how long it
took him to write the word and whether he was wrong in writing.

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 368 --

 B. Application server
The application server is created in the ASP.NET Core

framework. We use Razor pages technology for individual pages
in the application (“About”, “Top 100”, “Stats”, “Privacy”). The
“About” and “Privacy” pages are completely static and contain
basic information.

The “Top 100” (Fig. 2) and “Stats” pages (shown in Fig. 7)
dynamically retrieve information from the database. The “Top
100” page displays a list of the best players based on the score
for the last day, week, or all time. The Stats page shows an
overview of the number of games played and various statistics
in the form of charts.

In addition to these basic pages, the application also has a
page for administrator login and a page for creating group
games. The administrator can delete entries in the list of the best
players in the event in case of cheating by the players.

Fig. 7. Stats page of the Minutovka game

Another part of the application server is the API for playing
the game. This API provides operations:

 Get text to transcribe
 Save game results
 Score calculation + storing a player information
 Get game score
 Data export

1) Getting text to transcribe: The texts used by the application
for transcription were obtained from the Slovak Wikipedia from
[19]. These texts were processed in several steps:

 Transformation to plain text using the WikiExtractor
Python script [20]

 Text cleanup using own C# scripts
 Tokenization
 Sentense retrieval
 Removing nonsensical sentences - sentences that

contain too many numbers or begin with a number

have proven unsuitable for the purpose of transcribe
words on time.

The result of this process was a set of sentences. The set of

sentences from which the application generates the assignment
has 134.4 MB in plain text. It consists of 1,287,680 sentences
and 19,131,460 words. These sentences are used as input to an
algorithm to generate texts for transcription. The algorithm
randomly selects sentences from this list until it has the
minimum length of the text which is 2000 characters. It does not
make sense to generate more than 2000-character texts, as we
assume that 2000 or more characters cannot be transcribed in one
minute.

The text prepared in this way is stored in the database in the
GameToken collection and together with the GameToken ID is
returned from the appropriate API endpoint (Fig. 8).

Fig. 8. Example of the game data (the first six Slovak words shown in the words)

2) Save game results: It is a simple method that takes output
from a game (regardless of whether it ended successfully or
prematurely) and saves it, along with other information, to the
GameResult collection. As input, it receives the Answers field,
which it saves without any transformation. This field is the same
as presented in the database collection structure.

3) Score calculation: The calculation of the score was solved
on the client in the initial version of the game, but after several
attempts at cheating were detected, it was transferred to the
server. Upon successful completion of the game, the client
sends information about the completed game and asks the server
to quantify the score of the attempt (Fig. 9).

Fig. 9. Example of game score report

The final score

Ranking today, week,
overall, and typing speed

Player’s nickname

Question about the player
masters the typewriting

(Yes, No, I do not know)

Statistics about typing

Game statistics

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 369 --

The server proceeds as follows to calculate the score:

 Load results for given game (GameResult)
 Load game assignment (GameToken)
 Calculates the score based on the input and the result

of the game
 Calculate game statistics and typing speed chart

The base score and the number of words per minute are

calculated from the list of answers stored in the game result
(GameResult entity).

Words per minute (WPM) is the number of all words spelled
out by a player, as one game lasts exactly 1 minute, so we do not
need any other calculations. The number of correct and incorrect
words is calculated based on the match between the written word
and the sample word.

The Levenshtein distance metric is used to calculate the
game score. The Levenshtein distance between two strings
(of length and respectively) is given by
where

In the previous formula is the indicator function
equal to when and equal to otherwise, and

 is the distance between the first characters of and
the first characters of . and are 1-based indices.

The total score of the game is then calculated from the
submitted words as follows:

This score calculation includes two aspects. The more words
a player writes, the more points he can get. On the other hand, it
pushes him to make as few mistakes as possible, as he gets
penalized for wrong characters. The minimum scores a player
can get per word is 0.

After calculating the achieved score, the algorithm finds the
player's position in the top rankings. In addition to the score, the
application offers the player an overview of the typing speed
throughout the attempt. In this report, we divided 1 minute into
twelve 5-second sections, in which we show the number of typed
characters without spaces and line breaks. The application then
displays this report in the form of a chart (Fig. 10).

Fig. 10. Example of typing speed visualization (number of characters during the
game in five-second bins)

In addition to the score itself and the typing speed report, the
application also displays the typed text and highlights the errors
(in red) made by the player as we can see in Fig. 11.

Fig. 11. The game summary

4) Detecting cheating attempts and “hacker score“
In most multiplayer games, players try to find the weakness

of the game and use it to their advantage. In the original version
of the game, the complete score calculation was performed on
the client and the cheating was very simple.

Some of the cheating attempts were prevented by moving the
game evaluation to the server, but this approach also proved
insufficient. After moving the score calculation to the server, it
was no longer easy to upload the adjusted score to the statistics,
but it was necessary to create a larger payload, which contained
a record of a correctly executed game with high typing speed.

The initial attempts to overcome this protection were such
that the fraudster sent a record of the game to the server, but it
was not valid.

Apparently, the score counts as the number of correct words
based on user input. The cheaters prepared the payload (Fig. 12),
which seemed to rewrite very quickly one and the same word.
Thanks to this, they were able to get unlimited high scores.

Fig. 12. Example cheated game result payload

We treated this problem by using a game token. The server
saves the required text before the game starts, and the player
must send the identifier of this game token along with the
answers so that the server can verify that it is a valid attempt.
Once the words sent by the player are the same as the words
recorded in the game token, the player gets a zero score. The
game token can only be used once and is only valid for a short
time. This means that if you try to cheat, it can no longer be done
manually and requires the need for automated tools. The tool
must read real text and generate a payload, which passes the
check, within one minute.

In addition, it is clear that it is not possible to write those
2000 characters per minute, so sending an attempt in less than 1
minute is also considered fraud. As a result, the automated tool

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 370 --

must also wait before submitting the score 1 minute after
retrieving the text.

After checking the general rules, the written words are
checked. When the player is typing, we record for each duration
of the word and the list of all keys pressed. Ultimately, the sum
of all words typing time must be less than 1 minute.

For each word, we then check whether the player pressed at
least as many keys as there are characters in the typed word. We
check whether the sum of the times for typing each character is
the same as the time for typing the whole word. We also check
individual times for negative, if the time for typing a word /
character is less than or equal to 0. Then we consider the whole
attempt to be a cheating.

In addition to these clear signs of cheating, we were forced
to invent heuristics based on typing speed, because the methods
mentioned so far could be deceived by a sophisticated algorithm.

Our heuristics compute the so-called “hacker score” and
when exceeding the value of 1, the attempt is considered a
cheating. In heuristics, we calculate the following
characteristics:

The word typing speed must be at least 100 ms
(milliseconds) per character
The keystroke length must be at least 100 ms
If the player typed the word correctly but pressed more
or less keys than the word length

For each word, which was written faster than
we added „hacker score“ according to the

formula:

For each word that was typed quicker that
we added „hacker score“ according to the formula:

If the first condition is met, the second no longer applies.
Both conditions seek to ensure that a player cannot write a
maximum of 5 words in less than 100ms per character in order
not to be labeled as cheater.

If the number of keys does not match the word length, we
only check the keys with characters. If, the player presses more
keys than the length of the given word and does not press any
control key (e.g. Backspace, Delete, ...), then we add a hacker
score of 0.3 for the given word.

Overall, the heuristics of limiting the maximum possible
score to a little over 600, which is an acceptable upper limit. So
far the best results we have obtained are around 390. It is
possible that the 100 ms limit may be too high for professionals,
so for professional purposes it would be appropriate to lower this
limit.

C. Typing app
The last part of the application is the front-end part, which

implements the very dynamics of the game. This part is
implemented in the JavaScript programming language using the
JQuery framework.

The application contains a minimalist user interface
(Fig. 13). The potential player will be greeted on the home page
by a text box displaying the text to be transcribed. In addition, it
contains a graphic stopwatch that shows the remaining time.
Below this is a large text box. Next to it, we can find a button to
load other text. The game starts after the player type the first
character of the sample text.

Fig. 13. Typing app frontend

The box with the displayed text always displays 3 lines of
text. The first line is the line that the player is currently
transcribing, and below are the following lines. While rewriting
the text, the player is highlighted with the current word (marked
with a bold) and the status of the words written so far - green are
correctly spelled words and red are words in which the player
made a mistake. After typing a line, the text automatically moves
so that it always sees the currently transcribing words in the first
displayed line. The text is copy-protected by the CSS property
user-select: none and is overlaid by another element that also
prevents copying of the sample text. This additionally adds some
blur to the text at the bottom of the box.

The main input monitors user input. The countdown is
started after first player input. This input field has a protection
that is used to block text input using the Ctrl+V keyboard
shortcut (Paste command). Each keystroke is recorded in the
background. After pressing the "Space" and "Enter" key, the
typed word is sent for processing and the transcription of the new
word begins. The typed word is removed in the input - the user
input always contains only one currently transcribed word.
Multiple keystrokes have been protected against "sending" a
word if the typed word is less than 50% of the length of the
original word.

Fig. 14. Example data collected during word typing

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 371 --

After the timeout (1 minute), all acquired data are collected
and sent to the server, which evaluates it. After the evaluation,
the results of his game are graphically presented to the user
(Fig. 9).

The data that the application collects at runtime was shown
in part of the database layer. In this section, we will describe in
detail one record of typing a word.

In Fig. 14 we can see part of the structure when writing the
Slovak word "Zdroje" (in English: "Sources"). As we can see
from the attached example, the player first pressed the Shift key
and wrote the letter "Z" by up to 2662 ms. The total time to type
this word was 7426 ms, while the player pressed 12 keys. The
application also records repair attempts, which can be seen in the
following image (Fig. 15):

Fig. 15. Example shows fixing typing mistake

We can see that the player made a typo while typing the last
character. He wrote the letter "r" instead of the letter "e". We can
see on the record that the player corrected this by pressing the
Backspace key.

In addition to typos, such data will allow us to analyze the
way we write. On the Slovak keyboard there are some letters
with accents directly, or they can be typed using two characters
(for example a caron "ˇ" with a letter).

Fig. 16. Comparison of writing a letter č

Fig. 16 shows a comparison of the two records. In the first
case (left) we see the typing of a letter "č" using a key on the

keyboard. In the second example, we see the typing of the same
letter "č" using the keyboard shortcut "Shift+ˇ+ c".

V. RESULTS AND STATISTICS

The application also contains some statistics from the game,
which we made available to the public. The following statistics
are available since the application was launched as shown in
Table I.

TABLE I. OVERALL STATISTICS SINCE THE GAME STARTED

Number of played games 6,834

Number of players 1,772

Number of written words 221,114

Number of misspelled words 23,895

Number of corrected words during typing 6,952

Average number of written words 32.50

Average number of misspelled words 3.51

Average time to write a word (seconds) 1.65 s

Using the app, we managed to collect typos and mistakes that
players made while playing the game. First, we excluded words
where punctuation marks (dot, comma after a word) were
missing only, then words where the words differed only by
missing diacritics. The Levenshtein distance was the last
criterion we used to filter the data. If the distance was bigger than
the count of word characters divided by 2, we omitted the word
from the misspelled list because this word was too different from
the original. In total, we received from players 23,895 words
with some mistakes. Finally, 14,903 words remained after
applying the mentioned filters. After that, we analyzed the
individual mistakes and found the following mistake categories
that could be generalized (shown in the Table II).

TABLE II. ANALYZED COLLECTED WORDS FROM THE GAME

Mistake category Count % Lev(a,b) D(a,b)

One incorrect letter 5042 33.83 1 0
One incorrect letter added 2896 19.43 1 1
One letter dropped 3028 20.32 1 -1
Two incorrect letters 592 3.97 2 0
Two letters swapped 1189 7.98 2 0
One incorrect, one letter added 514 3.45 2 1
One incorrect, one letter
dropped 362 2.43 2 -1

Two incorrect letters added 209 1.40 2 2
Two incorrect letters dropped 240 1.61 2 -2
Combination of three errors 593 3.98 3 -3..3
More than 4 errors >= 4 238 1.60 4+ N/A

The meaning of the columns in the Table II. is as follows:

Column 1 (Mistake category) – the type of mistake
Column 2 (Count) – number of mistakes of the given
type (out of all mistakes)
Column 3 (%) – percentage of mistakes from total

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 372 --

Column 4 (Lev(a,b)) – Levenshtein distance between
original and misspelled word in the given category
Column 5 (D(a,b)) – the difference in the number of
characters between the misspelled and the original
word in the given category

The following figures (Fig. 17 – 20) visualize the data we
obtained from the game.

The graph in Fig. 17 shows the score distribution, where the
x-axis represents the score and the y-axis the total number of
games in which the players obtained the given score. We display
the minimum score from 1 to 395, which is the highest score
achieved so far. Of the total number of games for a given score,
we display games in which the players indicate that they do not
master the typewriting (red color), master the typewriting (green
color) or did not provide this information at all (blue color). In
this picture we can see that most players did not state whether
they master the typewriting. In addition, we can see the almost
normal distribution of scores.

Fig. 17. Distribution of the obtained score and a corresponding number of
games

The following graph (Fig. 18) shows the distribution of
written words, where the x-axis represents the number of words
and the y-axis the total number of games during which the
players rewrite the given number of words within one minute.
Again, it is possible to see an almost normal distribution, with
the average number of words written by all players being 32.50.

Fig. 18. Distribution of written words and a corresponding number of games

Fig. 19. Distribution of wrong words and a corresponding number of games

Fig. 19 shows the graph containing a number of erroneous
words (x-axis) that players made when transcribing the text (the
y-axis represents the total number of games played). We can see
that most often 2 wrong words were transcribed in one minute.

The last graph (Fig. 20) shows the total number of games (y-
axis) in which the player wrote a word with the specified number
of characters (x-axis). We could see that the players most often
wrote two-character and one-character words, while in Slovak
the most common occurrence is a 7.5-character word. This
means that players most often mistyped one-character and two-
character words.

Fig. 20. Distribution of typed word length and a corresponding number of
games

VI. CONCLUSION

In this article, we dealt with the design and development of
the web word-typing game called Minutovka. The main goal of
the game was to get typing errors in the Slovak language. In
addition, we used it to get information how people write and how
often they make typos. Thanks to this data, we can then generate
a larger set of misspelt words (error corpus) and use them as
inputs into various machine learning algorithms for natural
language processing, especially with focusing on the Slovak
language.

We would like to further expand the game and use it in
secondary schools, where typewriting is taught. In addition to
the generated texts, teachers could use their own texts and set a
maximum transcription time. Students could rewrite these texts,
and thus learn and practice typewriting, get feedback, and
compare themselves with classmates to motivate them to
improve. In this way, we could get a lot more data.

In the future, it could also be interesting to create other types
of games, e.g., 2D or 3D games that could be even more
interesting with a longer player's attention. In addition, it would
be appropriate to obtain data in other ways than just transcribing
the displayed texts. People often make mistakes also due to
ignorance of spelling or misunderstanding of the word heard. In
this case, it would also be possible to obtain data through
dictation and thus transcription of words by players from
recordings they would hear.

ACKNOWLEDGMENT

Acknowledgement: This work was supported by Grant
System of University of Zilina No. KOR/1122/2020.

REFERENCES

[1] „WolframAlpha computational intelligence,“ Wolfram Alpha LLC,
[Online]. Available:
https://www.wolframalpha.com/input/?i=total+number+of+Slovak+sp
eakers. [Cit. March 2021].

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 373 --

International Conference on
Language Resources and Evaluation (LREC)

Proceedings of the Tenth International
Conference on Language Resources and Evaluation (LREC 2016)

2nd
International Symposium on Instrumentation and Measurement, Sensor
Network and Automation (IMSNA)

2010 International Symposium on Computer, Communication, Control
and Automation (3CA)

Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems

IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC) Applied Sciences,

Association for Computing Machinery

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 374 --

