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Abstract—The electronic exchange of business to business
information (e.g. purchase orders, inventory data and shipment
notices between departments or organizations) can eliminate
the need for human intervention and paper copy trails. Incor-
porating Electronic Data Interchange (EDI) standards into an
organization can drastically improve the efficiency of processing
times. Modelling the behaviour of EDI messages within a Supply
Chain network’s queuing system has many purposes, from
understanding the efficiency of queue behaviour to process re-
engineering. In this paper we demonstrate that these messages
are heterogeneous, suffer from correlation, are not stationary and
are challenging to model. We investigate whether a parametric
or non-parametric approach is appropriate to model message
service and inter-arrival times. Our results show that parametric
distribution models are suitable for modelling the distribution’s
tail, whilst non-parametric Kernel Density Estimation models are
better suited for modelling the head.

I. INTRODUCTION

Queuing systems help businesses within the Supply Chain

domain improve productivity and turnover. It enhances client

satisfaction by allowing for the processing of large volumes

of messages with persistent storage [1]. When demand ex-

ceeds supply, queuing systems provide a more streamlined

experience by preventing job loss and supporting queue and

job prioritization. This is integral to avoiding Supply Chain

distribution problems by keeping the system steady-state [2].

A recent report on future trends for the Supply Chain sug-

gests that resiliency is an essential requirement for customer

needs [3]. Queuing systems are ubiquitous across industry

domains: telephone communications [4], road traffic flows

[5], hospital waiting lists [6], and banking transactions [7].

However, like all computing systems, queues are not immune

to performance and reliability problems, including latency,

bottlenecks, scalability, and the challenge of random arrival

of incoming messages [8].

Our interest originated from problems arising within a

Supply Chain network, where message processing times are

not clearly understood. In practice, these heterogeneous EDI

messages suffer from numerous failed message re-tries and

throttling, causing bottlenecks within the enterprise messaging

system. The benefits of modelling these messages and their

queue behaviour could lead to a simplified understanding of

the system. Given the sheer volume and velocity of incoming

messages processed through the system, some abstraction will

be necessary. In our example system, one might see over two

million messages processed on a typical day. Depending on

size, these messages may be split into smaller sizes and lead

to potentially over thirty-two billion jobs processed through

the Enterprise queuing system. Another important area where

these EDI Supply Chain messages are important is within

the realm of smart contracts and distributed ledgers. Applying

smart contracts using Blockchain can reduce fraudulent trans-

actions and help trace misplaced items within a transactions

life cycle [9].

This paper studies the challenges we faced when modelling

EDI transactions, including correlation, message bundling and

heavy-tailed data. We consider different techniques for filter-

ing, splitting, and grouping the data to facilitate parametric

and non-parametric modelling. We also attempt to classify the

events at the head of the distribution.

We aim to address the following questions. First, can EDI

messages be modelled using parametric, or, failing that, non-

parametric techniques? Second, can the service time (ST) and

inter-arrival times (IAT) of an EDI message be modelled by a

parametric method? If not, can non-parametric techniques be

used? Third, are we able to classify these messages?

This paper is structured as follows. Section II describes

the background and related research. Section III describes the

dataset and methods we took and the limitations of our dataset.

Section IV and Section V provide results and a discussion.

Section VI concludes and notes future work.

II. BACKGROUND AND RELATED RESEARCH

A. Electronic Data Interchange

EDI is defined as the inter-organizational, computer-to-
computer exchange of business documentation in a standard,
machine-processable format [10]. These messages are part of

a Supply Chain messaging architecture component. It enables

electronic exchange and processing of these heterogeneous

business documents through the network. Our research is cen-

tered around these heterogeneous EDI messages (e.g. purchase

orders, invoices, shipment notices). Different EDI message

standards exist, including X12, EDIFACT, TRADACOMS

[11]. In our analysis, most of our messages were of the type

X12.

We will discuss systems that support queueing of EDI

transactions next. There is surprisingly little literature on

the modelling of EDI transactions. Most of the literature
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concentrates on the benefits of switching to an EDI system

[12], [13].

B. Queuing Applications

Enterprise Queuing applications are used within the Supply

Chain domain. We briefly consider four: ActiveMQ [14],

Kafka [1], RabbitMQ [15], and IBM Message Queue(MQ)

[16].

RabbitMQ is an open-source distributed message broker.

It supports multiple messaging protocols and offers flexible

queue routing with multiple exchange types [17]. Rabbit

MQ has a broad customer base with over thirty-thousand

companies running the software [18].

Kafka is an open-source distributed event streaming plat-

form. It takes raw input messages categorized by Kafka

and transforms them for further consumption or follow-up

processing. It is scalable, fault-tolerant and can store and

process streams of data with a guarantee of zero message

loss [19]. Kafka is often used by high-end social networking

companies. Twitter use it as part of their stream-processing

infrastructure [20]. LinkedIn uses it for streaming data in news

feeds and offline analytical systems [21]. Netflix uses it for

data collection [22]. AWS use it as part of their cloud platform

[23]. Kafka has a broadly similar market share to Rabbit MQ

with over thirty-thousand companies using Kafka today [24].

Active MQ is an open-source Java-based standalone mes-

sage broker. It supports high availability, load-balancing, and

asynchronous messaging [25]. Active MQ has roughly half the

market share of customers of Kafka and Rabbit MQ, with just

over fourteen thousand customers [18].

IBM Message Queue (MQ) belongs to the WebSphere

family. It is part of the middleware stack. It supports point-

to-point, publish/subscribe and file transfer methods for its

messaging and queuing operations. IBM MQ can transport

any type of data as a message [16].

C. Queuing Theory

Queue theory studies an orderly list of one or more jobs

[26]. For stream-based job types, these jobs are processed

through single or multi-server queuing systems. The arrival of

such jobs may be random or based on pre-defined schedules.

The method of service, such as ’first in first out’, ’last in first

out’ and ’shortest job first’ can also be important [27].

Modelling incoming jobs via service times and inter-arrival

times gives insight into delays, queue sizes and how a heavy

influx may impact a system. When modelling, queue length,

idleness and wait times are fundamental metrics [28].

D. Distribution Fitting

Distribution fitting is the study of fitting a probability

distribution to a dataset given measurements of a random

quantity that one can use to make inferences about the sample

population [29]. With the fitted distribution, one can predict

the probability of specific events.

Two common methods for estimating distribution parame-

ters are the Method of Moments Estimation (MME) and Max-

imum Likelihood Estimation (MLE). MME was introduced

by Pearson and matches the moments of a distribution to the

empirical moments [30]. MLE, proposed by Fisher, estimates

the parameters of a probability distribution by maximising the

likelihood of the observed data [31]. Research undertaken by

Fisher shows that MLE is generally more efficient than MME

because MLE’s variance is smaller [31].

E. Goodness of Fit Testing

When a dataset is presented, it can be helpful to understand

how well the underlying data fits a known probability distri-

bution. There are methods to assess a distribution’s goodness

of fit to a data set.

The Cramer-Von Mises (CVM) test criterion is a non-

parametric test that examines the goodness of fit of a cumu-

lative distribution function (CDF) compared to an empirical

density function (EMF) [32]. This significance test will deter-

mine whether data is drawn from a known CDF.

The Kolmogorov–Smirnov (KS) test measures the distance

between the EMF of the sample and the CDF of a reference

distribution or between the EMF of two samples [33]. KS tests

are useful when testing whether a set of observations are from

a specified continuous distribution [34].

The Anderson–Darling (AD) test is also a statistical test

of whether a particular PDF fits the data [35]. This test is a

modification of the KS test, giving more weight to the tails of

the empirical data.

F. Heavy Tailed Estimation

A heavy-tailed distribution is when the tails of the data are

not exponentially bounded [36]. Heavy tailed distribution was

first introduced in financial data from Mandlebrot in 1963 [37].

In our case, if enough messages have long processing times,

this may lead to poor performance. When modelling data, the

distribution’s tails may form a different parametric fit than the

rest of the data. If we need to split our data into shorter and

longer intervals, we take a simple approach of splitting the data

into a head and a tail using simple criteria of > n seconds.

More generally, Hill proposed a method allowing inferences

about the tails of data [38].

G. Hurdle Distribution

When modelling count data, one should often give special

consideration to zero value. Depending on the dataset, it

may have different interpretations. Some count models suffer

from excess zeros. A Hurdle model can support modelling

excess zeros in the data by combining a left-truncated count

component with a right-censored hurdle component [39]. A

Hurdle distribution can be preferable to Poisson distribution

due to the additional flexibility [40].

H. Kernel Density Estimation

Kernel Density Estimation (KDE) is a non-parametric

method to estimate the density of a random variable. When

the sample population does not fit a known probability distri-

bution, KDE can be used. KDE can indicate the data being

either multi-modal or having a degree of skewness [41].
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To implement KDE, one needs to choose the kernel and

bandwidth. Different kernels apply different weights based on

how far the data is from each point. Some common kernels are

Epanechnokiov [42], Gaussian, Uniform, Box, and Triangle.

The bandwidth determines how spread out the kernels are.

Large bandwidths can cause a high degree of bias in the

distribution [41]. There are different algorithms to define

the bandwidth, including Silverman’s Rule of Thumb [41],

Sheather & Jones [43], and Park & Marron [44].

For the accuracy of the KDE models, we used visualization

techniques and the area under the curve as a method to assess

a best-fit. The MISE was not appropriate for statistically

confirming a Goodness Of Fit as we do not know the true

density of the data.

I. Related Work

We review some of the literature around performance mod-

elling of queueing applications for EDI messages.

LinkedIn wanted to move from a batch-oriented system to a

real-time publish-subscribe system. They needed a system that

could process 10 billion messages per day with a peak demand

of 172,000 messages per second. They initially explored

ActiveMQ, but instead, they developed Kafka [45].

Wu, Shang & Wolter analyzed the performance of Kafka

using specific tuning parameters [46]. Their analysis concluded

that the performance varied significantly depending on mes-

sage type and system infrastructure. They also noted a strong

correlation between packet sizes and sending intervals.

Henjes, Menth & Zepfel conducted a study of the capacity

of the IBM MQ JMS Server [47]. They considered different

filters, message sizes and the number of pubs/subs. They found

that message size had a significant impact on the message and

data throughput of the server. The number of topics had little

influence on server capacity. They did, however, find that the

message replication grade and the number of filters have a

significant impact on server capacity.

III. DATA SET AND METHODS

Modelling the behaviour of a queue can assist in improving

the stability and reliability of queuing systems. Identifying the

distribution of inter-arrival and service times allows modelling

the behaviour of a queue and the prediction of congestion

issues. We demonstrate data wrangling techniques that will

enable us to fit our data into parametric and non-parametric

models.

A. System Description and Data Collection

The study presented in this paper uses an enterprise dataset

from a cloud-based Supply Chain Network. Within our Supply

Chain Network, a message can traverse multiple paths until it

reaches its destination. As the message passes each point on

its path, multiple queues may ingest the message. First, we

analyze the messages from source to destination and from one

endpoint to another.

Fig. 1 provides a greater intuition of the flow of a message

on a Supply Chain Network. We can see from the figure

that multiple queues interlock the communication channels

between the various entities. Our analysis was focused on

the entities in shaded grey. The combined Translation Service,

Rules Engine and Message Dispatcher were provided on seven

servers. In addition, there was the SAP Server.

Fig. 1. Supply Chain Network Architectural Message Flow

We collated four different datasets from a Cloud Supply

Chain Network organization. Fig. 1, a logging application

called Graylog aggregates both the SAP and Outbound Mes-

sage Service information. The Message Dispatcher, B2B Rules

Engine, and the Translation Service log files are aggregates

using a separate process. The log files contained a mixture

of structured, unstructured and XML data. We stripped a lot

of the data from within the log files to reduce noise. We

then filtered to help classify the start and end of a message

and the different steps the message took. We noted associated

beginning and ending times, cumulative counts (to determine

message splits, see below). Where one message generated

other messages, they were tagged as a child/parent message.

This data-wrangling technique allows for the traversal of each

messages lifetime within the network, as represented by Fig. 2.

We wanted to focus our efforts on the complete end-to-

end flow of a message from its source to its final destination.

Initially, we took the SAP Service as our starting point.

However, for the data available to us, we noted only 527

incoming messages that we could trace end to end. Instead,

we chose to look at the Translation Service, of which 90% of

all incoming messages make use.

Fig. 2 shows an example of the processing complexities

of a single message flow end to end. The first entity to the

left shows the start of the message from the source. The

message then travels to the B2B Rules Engine and the Message

Dispatcher displayed by the oval entities. From here, the

message gets sent to three different queues.

These parent and child messages then get sent to the Trans-

lation Service represented by black rectangles. The Translation

Service processes the message through the Translation queues,

then back to the B2B Rules Engine / Message Dispatcher,

where the Rules Engine initiates a Command Request and a

Data Request shown with a white rectangle with grey text.

After the Command Request and Data Request complete, the

Rules Engine and Message Dispatcher send the message to the
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client’s trading partner, which is the last entity to the right of

the image. As the MQ system did not log when a message left

the queue, we used the Rules Engine and Message Dispatcher

Command Request and Data Request to determine when the

message left the queue.

From Fig. 2 we see that one message entered nineteen

queues as part of its lifecycle. This unobfuscates the flow of

an EDI message in a way that does not seem to be presented

in previous literature.

Fig. 2. B2B Low Level Message Flow, Note the number of queues with the
grey rounded rectangle, show how often one message enters a queue through
its lifecyle

The Translation Service illustrated in Fig. 1 offers different

functionality. It can translate messages from one format to

another (e.g. X12 to CSV) and can concatenate or extract

documents from a message. It can split one input file into

multiple output files. This reduces the size of the message

processed through the queues, thus reducing job sizes and

facilitating parallelism.

Fig. 3 shows the steps a message takes within the Transla-

tion Service. We have selected a simple message, as a more

complex message result in a larger number of steps. Step 4

is where the actual translation occurs. Document extraction

begins in Step 6. In Steps 16 to 18, messages are sent to the

Translation queue, as noted in Fig. 2 with the grey rounded

rectangles with the titles “Queue 3” and “Queue 4”. Again,

the order of the steps does not appear to have been noted in

the literature review.

B. Data Overview and Limitations

As noted, we focus on the Translation Service, which

processes around 2 million messages per day. Our dataset

was 13.5 hours, from midnight on the 30th of November

up until 13:30 of that same day. Table I shows the volume

of messages we analyzed. From the Translation Service, we

observed data going into two different queues. The CMD

queue is the command queue, where commands are sent. The

Data queue is where the corresponding data is sent. Every

Fig. 3. Message Translation Steps

message is associated with a CMD and Data Queue entry. If

we refer back to Fig. 2, this single message hits these queues

eight times in total, represented by the rounded grey rectangles

titled “Queue 3” and “Queue 4”.

TABLE I. TRANSLATION SERVICE ALL DATA MESSAGE 
VOLUME

Date CMD Queue Data Queue
30th Nov 1,036,938 1,036,956

We note a number of practical limitations of the data set.

First, it was challenging to trace a message from end to end.

The was no unique identifier between the different log files

and Graylog that allow us to trace all relevant information.

While every effort was made to identify unique characteristics

that trace individual messages through the system, our method

is somewhat ad hoc.

Second, because of the logging level in the system, we could

only directly identify when the organization sent a message to

the queue. We had to use log files from other applications to

infer when the message left the queue.

Finally, collecting data for longer periods from this system

is challenging. Due to the sheer volume of messages hitting

the Rules Engine and the Message Dispatcher, there was a lim-

itation in the amount of data we could gather. Consequently,

the Rules engine and the message dispatcher only keep data

for a few hours before the log files are recycled.

C. EDI Modelling

When fitting data to parametric models, the easiest case

is when time-series data shows no dependence on previous

values. The independence of arrivals is also a common as-

sumption in queueing models. If a correlation exists, the
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time-series data may be deemed non-stationary, and different

techniques may be used to handle correlation. Thus we check

for correlation whilst checking the distribution fit of the data.

Table II shows the Spearman’s rank correlation co-efficient

test statistics for non-normal data.

TABLE II. SPEARMAN RANK 
CORRELATION

Co-efficient Start Range Coefficient End Range Result
0.05 .29 Weak
0.30 .49 Medium
0.50 1 Strong

We shall now describe an approach to our analysis in the

following set of subsections.
1) Normal And Busy Periods: Based on information from

the team operating this system, we knew there was a period

where the system had been considered to have a performance

problem. When analyzing the data, we found a period where

the number of messages queued was always bigger than zero

and often growing. Accordingly, we broke the data into two

periods, busy and normal. Table III shows our busy period

was just under forty minutes, whilst our normal period was

just over twelve hours. There is a similar volume of messages

per second going into each queue (≈ 22 messages per second).

This suggests the busy period is caused by a change in STs

rather than IATs. Arrivals to the CMD and Data queue are

generally similar in both periods, though there is a slight

discrepancy of eighteen messages between the two queues in

the busy period. The difference may be due to some messages

containing large attachments. If the message is big, it is

paginated, causing more data messages.

TABLE III. TRANSLATION DATA DIFFERENT 
TIME PERIODS

Period Start Time End Time CMD Queue Data Queue
Normal 12AM 12PM 984,183 984,183
Busy 12:50PM 1:29PM 52,755 52,773

2) Message Split Count: We noted a significant number

of messages that were part of a bundle, i.e., part of a group

with zero seconds between them. We consider splitting the

messages into groups according to how many messages were

in the bundle.
First, Split = “1” is when a single message comes into the

system, and one message gets sent to the queue. These are

not part of a bundle and may be small in size. Split = “2” is

when one message comes into the system, and two messages

get sent to the queue. Finally, Split = “Other” is when one

message comes into the system, and three or more messages

get sent to the queue. The maximum bundle size we saw was

1,617. These are typically large bundled messages. If we refer

back to Section I, thirty-two billion jobs (2 million * 1617)

can come from two million messages.
Table IV shows how many messages belong to each split

group over the normal period. We note that most messages are

in the Split = 1 group.

TABLE IV. TRANSLATION 
DATA PER SPLIT

Splits Normal Period Percentage
1 558,549 57%
2 233,421 24%

other 192,213 19%

3) Hurdle Modelling: A considerable volume of messages

was processed in zero seconds. When attempting to fit the

data to a distribution, using a hurdle model, we considered

removing these zeros from the data to improve fit and to

facilitate overdispersion. Table V shows the percentage of

messages removed using a hurdle model.

TABLE V. NORMAL PERIOD: 
HURDLE MODEL

Splits Normal Period Data Removed
1 511,670 9%
2 112,295 48%

other 119,39 6%

4) Message Bundle: As we noted above, there are a number

of messages that result in a bundle. When calculating the

arrival time and service time of these messages, it may make

sense to treat them as a single message. In this case, we use

the first message in the bundle to calculate the IAT and ST,

as the other messages appear to have zero duration.

5) Scheduled Versus Un-Scheduled Messages: We checked

our data for the normal period for other signs of burstiness.

In Fig. 4 we show the frequency of jobs arriving based on the

minute within the hour. We note that period 00 has the highest

frequency of messages. Additional minutes 30-33 and 43-46

also show signs of extra scheduled jobs.

Fig. 4. Normal Period : Burstiness in Data

These scheduled jobs are likely to require separate mod-

elling, so we removed these scheduled times from our model

before attempting to model random arrivals.

6) Map Count: If we refer back to Fig. 3, we note that in

step 7, the Translation Service fetches a map for the message.

A map is an XML information document relating to the job

(e.g. cost, shipment, details etc.). Some maps may also contain
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programmatic loops. As different maps may influence mes-

sages duration, we consider fitting different models according

to these maps.

In practice, not every message is associated with a map,

and many maps can be associated with one message. Table VI

shows the total count of maps for each split. We note that the

maximum amount of maps for one message was 30.

TABLE VI. NORMAL PERIOD: 
MAP COUNT

Split Total Maps Max Maps per job
1 286,622 2
2 135,095 4

Other 14,556 30

D. Parametric Modelling

We will consider modelling service times and inter-arrival

times parametrically. We consider a range of possible distribu-

tions (Table VII) and data transformations (Table VIII) when

fitting. We determine the parameters for each distribution, and

then an Anderson-Darling Goodness Of Fit test can be used

to determine if the data fits that distribution.

TABLE VII. 
PARAMETRIC TESTS

Normal Log Log Logistics Logistic
Cauchy Gamma Burr Inverse Burr
Exponential Beta Weibull Pareto

TABLE VIII. DATA 
TRANSFORMATIONS

Log() Sqrt() Exp()
Log(Log) Sqrt(Exp) Sqrt(Log)

Our service times are extracted from the data as the time a

message starts to the time the following message starts. Inter-

arrival times are the time between when one message gets sent

to the queue and when the following message gets sent to the

queue. While fitting, we noted that our data was heavy-tailed

and right-skewed. As previously mentioned, we considered a

head and tail approach. For both STs and IATs, we considered

the head of the data to be values of one second or under.

E. Non-Parametric Modelling

When a parametric approach does not provide a useful

technique to model a dataset, a non-parametric approach can

sometimes be useful. We apply Kernel Density Estimation

(KDE). We used Silvermans Rule of Thumb, Sheather &

Jones, Biased Cross-Validation, Un-Biased Cross-Validation,

and Direct Plug-in methods for the bandwidths. Finally, our

study will focus on modelling the service times with limited

modelling on the inter-arrival times.

F. Message Classification

While reviewing the dataset for over-dispersion, we ob-

served a number of interesting features in the STs that were

visible when plotted on a log scale (e.g. Fig. 5 and 6) where

the message Split =’ 1’. We note that there appeared to be

stratification of times into different overlapping distributions.

It may be interesting if these different distributions represent

different ‘classes’ of messages. A business needs to understand

baseline metrics, and getting insight into these messages from

the head of the distribution motivates our research question

classifying them.

Fig. 5. Service Times - Log Transform

It appears that the messages from -7 to -4 form one group,

so to better understand the different classes of messages, we

zoom in on the range from -4 to -1.5 and note potentially five

distinct types of messages as represented in Fig. 6. We can

crudely split these into different groups as shown in Table IX.

Fig. 6. Service Times - Log Transform, Filter =1

TABLE IX. MESSAGE CLASSIFICATION 
GROUPING

Group Start End Range (ms) Mean (ms) Customers
1 -7 -4 0.001 – 18 0.005 651
2 -4 -2.7 18 – 67 0.036 635
3 -3.0 -2.2 49 – 110 0.307 577
4 -2.0 -1.7 137 – 182 0.158 429
5 -1.7 -1.5 182 – 223 0.205 417
6 -1.5 0 223 – 999 0.404 524

IV. RESULTS

We will now describe the results of our analysis.
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A. EDI Modelling

1) Normal and Busy Periods: Table X shows summary

statistics for the service and inter-arrival times for each queue

during both normal and busy periods. We note that the

maximum duration of service and inter-arrival times is 458s

(7.6 min) which is significant compared to all average values.

TABLE X. NORMAL/BUSY PERIOD - ST & IAT IN 
SECONDS.MILLISECONDS

Normal Period Busy Period
CMD
Queue

Data
Queue

CMD
Queue

Data
Queue

Service Time (s)
Min 0.00 0.00 0.00 0.00
Mean 0.04 0.04 0.04 0.04
Max 22.80 22.80 458.44 458.44

Inter-Arrival Time (s)
Min 0.00 0.00 0.00 0.00
Mean 0.04 0.04 0.04 0.04
Max 22.43 22.43 446.84 446.81

We note from Fig. 7 and Fig. 8 that the histograms have

one bin where the majority of the data lies. On this scale,

adding more bins does not change the shape of the histogram,

as most messages took under one second to process. Fig. 7

and Fig. 8 clearly do not show enough details to allow us to

discern useful patterns, other than the data having a long tail.

Fig. 7. Histogram: Busy Periods, IAT and ST

Fig. 8. Histogram: Normal Periods, IAT and ST

2) Message Split Count: Based on our discussion in Sec-

tion III-C, we split the service and inter-arrival times into its

head and tail. Fig. 9 shows improved definition in terms of

both service and inter-arrival times. Both the head and the tail

of the data show more bins containing an observable amount

of data, and, consequently, we are able to discern more.

Fig. 9. Messages - Heads And Tails

We plotted the autocorrelation of each time series to look for

correlation with a cutoff of between thirty and sixty lags. We

have also done crosscorrelation tests between the service times

and the interarrival times and noted that the tests confirmed

crosscorrelation existed past sixty lags. We checked the data

for correlation, grouping the messages by their split count.

Table XI shows that there is no correlation in the tails of the

model except for IAT where Split = ’2’. We note that the head

of the data does present correlation. We approach modelling

this part of the data with caution unless correlation can be

removed or understood.

TABLE XI. CORRELATION 
CHECKS BY SPLIT

Correlation indicated by ACF
Test Split = 1 Split = 2 Split = Other

ST <= 1 second True True True
IAT <= 1 second True True True

ST > 1 second False True False
IAT > 1 second False False False

3) Hurdle Modelling: We removed the transaction mes-

sages of zero seconds duration from the model. This was done

for all messages in the head of the data. We performed this task

in consideration of Hurdle modelling and due to the fact that

several standard transformations can not be performed without

either removing the zeros or shifting the data. Even after

removing transactions of zero duration, the histogram does

not change substantially (see Fig. 10 left) as the majority of

messages are in the millisecond range. Interestingly, removing

these zeros from the data does also not remove correlation

from the models (Fig. 10 right).

To investigate this correlation in service times further, we

will now explore the data by splitting it in other ways.

4) Message Bundle: When modelling by message bundle,

our analysis identified the first, up to and including the second

last message was processed in zero seconds of duration. We

noted that only the last part of the bundled message had a

duration greater than zero seconds. We looked at modelling
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Fig. 10. Distribution Head : Message Bundle With Hurdle Implementation

by message bundle to see if a correlation still existed in the

data, as per previous Fig. 10 and correlation was still present.

Thus, bundles of messages alone are not a full explanation

of correlation in the data.
5) Scheduled Versus Un-Scheduled Messages: Referring

back to Fig. 4, we noted different periods where the frequency

of messages is higher than those of other periods. In particular,

we note the 00 minutes, minutes 30–33 and minutes 43–46

appear to represent busier periods, which could contribute to

correlation in our data. We investigated the impact of the

removal of these scheduled messages from our data. As per

Table XII, we were not able to remove correlation from our

data based on the results of the table.

TABLE XII. SERVICES TIMES - CORRELATION CHECKS BY 
SCHEDULE

Test Correlation indicated by ACF
Hurdle Implementation True
Removed minutes 00 True

Removed minutes 30-33 True
Removed minutes 43-46 True

Table XIII is a summary of the different filtering techniques

we have applied and the results of the correlation tests.

TABLE XIII. RE-CAP OF CORRELATION 
TEST RESULTS

Seq Corre-
lation
Exist

Volume % Hurdle
Dist.

Split
= 1

Split
= 2

Split
=
other

00
Sched-
ule
Re-
moved

30-
33
Sched-
ule
Re-
moved

43-
46
Sched-
ule
Re-
moved

<=1
Sec-
ond

> 1
Sec-
ond

1 True 558,312 57 False True False False False False False True False
2 True 233,373 24 False False True False False False False True False
3 False 192,208 20 False False False True False False False True False
4 False 511,669 52 True True False False False False False False False
5 True 112,294 11 True False True False False False False False False
6 True 11,938 1 True False False True False False False False False
7 False 487,212 50 True True False False True False False False False
8 True 109,971 11 True False True False True False False False False
9 True 11,526 1 True False False True True False False False False

10 False 440,629 45 True True False False True True False False False
11 True 100,447 10 True False True False True True False False False
12 True 10,560 1 True False False True True True False False False
13 False 394,702 40 True True False False True True True False False
14 True 928,75 9 True False True False True True True False False
15 True 9,623 1 True False False True True True True False False
16 True 558,312 57 False True False False True False False True False
17 True 233,373 24 False False True False True False False True False
18 True 233,373 24 False False False True True False False True False
19 False 235 0 False True False False False False False False True
20 False 47 0 False False True False False False False False True
21 False 6 0 False False True False False False False False True
22 False 216 0 True True False False True True True False True
23 False 44 0 True False True False True True True False True
24 False 6 0 True False False True True True True False True
25 True 394,485 40 True True True False True True True True False
26 True 92,831 9 True False False False True True True True False
27 True 9,617 1 True False False True True True True True False

6) Map Count: We now look at the implication of the map

on the correlation by splitting the data according to how many

maps were applied. When analyzing the map information, we

noted 40% of transactions have no map name, and 96% of

transactions have either 0 or 1 maps associated with them, and

3.5% of transactions have more than one map. From Table XIV

we note that all tests passed correlation except where the map

count for a message was greater than three, which represents

0.14% of the messages.

TABLE XIV. SERVICE TIME : 
CORRELATION RESULT

Test Messages % Map
Count

Correlation

1 687,467 100.00 all Weak
2 383,024 55.72 1 Weak
3 22,832 3.32 2 Weak
4 1,311 0.19 > 2 Weak
5 24,143 3.51 > 1 Weak
6 280,297 40.77 < 1 Weak
7 663,321 96.49 ≤ 1 Weak
8 686,153 99.81 ≤ 2 Weak
9 686,495 99.86 ≤ 3 Weak

10 969 0.14 >3 True

It appears that the number of maps is a contributing factor

to the correlation we are seeing. With this insight, we consider

parametric and non-parametric modelling. Before doing that,

we will briefly look at the data on a larger scale.

B. Parametric Modelling

1) Modelling Service And Inter-Arrival Times: Initially,

we tried to fit parametric distributions and tested the fit on

all data with no filtering techniques applied. However, some

parts of the data are amenable to the fitting of a parametric

distribution. For example, we found a reasonable fit to a

parametric distribution using the message split count on the

tail, representing 0.3% of the data. In this case, a filter was

applied ( split=1), a hurdle model was implemented We can

confirm that the tail of this filtered data fits a parametric Burr

distribution using the Anderson-Darling test (see Table XV).

TABLE XV. AD TEST NORMAL PERIOD, ST, 
TAIL OF DATA

AD Score P-Value Test
1.2 0.3 Pass

We ran similar tests on the tail of the inter-arrival times

where the inter-arrival times is > 1 second. We consider, for

example, the results of attempting to fit distributions to the

IAT with Split = 1, and with no hurdle model. The results of

the AD tests conclude, as per Table XVI that this filtered data

does not fit a parametric distribution. However, we observe

that a no-transform and a square root transform (highlighted

in bold) are relatively close to a Burr distribution but do not

pass the AD test.

For the head of the data, i.e. ST <= 1 second, we could

not parametrically fit the data to a parametric distribution,

irrespective of transformation or implementing any splitting
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TABLE XVI. 
IAT > 1, FILTER = 1 : AD TEST

Ad test data Log
(data+1)

Sqrt
(data)

Exp
(data)

Sqrt
(log
(data+1))

Log
(log
(data+1)
+1)

Sqrt(
exp(
data))

AD Score
Log
Normal

Inf 55 Inf Inf 55 48 Inf

Log
Logis-
tic

16000 45000 59000 Inf 120000 80000 Inf

Gamma 34000 87 Inf 6600 66 61 7100
Weibull Inf 6600 4800 Inf 24000 18000 .
Expo-
nential

480 610 670 Inf 740 680 Inf

Cauchy 110 92 95 170 82 83 140
Logistic Inf 56 Inf Inf 46 46 Inf
Pareto 8200 610 670 Inf 740 680 Inf
Burr 3.9 6.6 4 Inf 6.6 8.5 Inf
Inv
Burr

20 15 20 Inf 15 14 Inf

In the interests of space only AD scores have been shown. The majority
p-values round 0.00

methods. Table XVII shows that the AD score on all of the

tests is high (an AD score of 3.5 or below would be sufficient

to pass the AD test).

TABLE XVII. 
ST < 1, FILTER = 1 : AD TEST

Ad test data Log
(data+1)

Sqrt
(data)

Exp
(data)

Sqrt
(log
(data+1))

Log
(log
(data+1)
+1)

Sqrt(
exp(
data))

AD Score
Log
Normal

4146 4279 4146 78917 4279 4427 78917

Log
Logis-
tic

1099486 153957 1703852 35541593 1778558 1198064 89237003

Gamma 681391 20247 7959 85258 6757 14646 81636
Weibull 410883 453321 615255 2912272 679932 492797 9870194
Expo-
nential

131869 112365 9986 200079 10607 97906 216494

Cauchy 101117 101117 98590 42829 103782 96204 102433
Logistic 58318 54796 24413 63141 23026 51976 60585
Pareto 4300 4624 9986 200079 10607 4936 216494
Burr 4488 4682 4487 54435 4682 4903 54470
Inv
Burr

5210 5651 5216 57655 5690 6089 57675

In the interests of space only AD scores have been shown. The majority
p-values round 0.00

We also attempted parametric fits to subsets of the data

based on the map count. Previously, we saw that splitting the

service times by map count reduced correlation. Table XVIII

shows the results of fitting followed by an AD test. With a

transformation of square root and exponential for the para-

metric tests, the AD score is exceptionally high. None of the

fits passed the AD test.

C. Non-Parametric Modelling

As no suitable parametric model has been found, we set

out to model the head of the data using KDE. We fitted KDE

models to the head of the data where split=1. Examining the

histograms, we found too much white space for convincing

regardless of the bandwidth, kernel, bins, or custom breaks

used. We then reduced the data size to a sample size of

TABLE XVIII. 
MAP COUNTS = ALL - AD TEST

data+1 sqrt(data+1) exp(data+1)
Transformation AD Test P-Value AD Test P-Value AD Test P-Value

Lognormal Inf 0.00 Inf 0.00 Inf 0.00
Log logistics 53231368 0.00 132692775 0.00 Inf 0.00

Gamma Inf 0.00 Inf 0.00 Inf 0.00
Weibull Inf 0.00 40223101 0.00 Inf 0.00

Exponential 273165 0.00 293850 0.00 Inf 0.00
Cauchy 136839 0.00 135069 0.00 140489 0.00
Logistic Inf 0.00 Inf 0.00 Inf 0.00
Pareto 278707 0.00 293850 0.00 Inf 0.00
Burr Inf 0.00 Inf 0.00 Inf 0.00

Inverse burr inf 0.00 Inf 0.00 Inf 0.00

fifty thousand messages, implemented k-fold techniques and

re-applied the KDE modelling techniques. From Fig. 11 we

observe that KDE does fit the tail of the data reasonably well

but see a less convincing fit at the head of the first bin. The

model appears to be under-predicting the data within the first

bin.

Fig. 11. KDE: ST<=1 Second

Encouraged by these results, we looked at the data grouped

by the hour and were able to fit the data using KDE. Fig. 12

shows the resulting histograms, the histogram to the left

overlayed with a KDE model uses a bandwidth selector of the

Sheather-Jones “plug-in” estimator with a method of “dpi” and

an Epanechnikov kernel. We used a break size of 50 on the

histogram. The histogram to the right has a bandwidth selector

of unbiased cross-validation using a rectangular kernel.

Fig. 13 also shows the resulting histograms, the histogram

to the left uses a bandwidth selector of unbiased cross-

validation and a triangle kernel. The histogram to the right

has a bandwidth selector of Sheather-Jones “plug-in” estimator

with a method of “dpi” and a triangular kernel.

Most data split by the hour permitted convincing KDE fits,

except for 9 am, and 11 am, where we did not find a good

match between the fitted distribution and the histogram.

D. Message Classification

If we refer back to our hypothesis question on message

classification Fig. 5 shows the head of the data transformed
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Fig. 12. KDE: Fitting By Hour

Fig. 13. KDE: Fitting By Hour

for all messages > 0.000 milliseconds and < 1 second. In

Table XIX we have attempted to classify the messages between

Group 1, which is from - 7 to - 4 (0.001 to 0.018 milliseconds),

and Group 2, which is -4 to -2.7 (0.019 to 0.036 milliseconds).

TABLE XIX.
HEAD MESSAGE CLASSIFICATION: GROUP COMPARISON

Group Milli
sec-
onds

Doc
Type
Count

Max
Map
Count

File
Size
Bytes

Splits Transl-
ation
Action

EDI
Types

1 0.001
–
0.018

2 2 60
bytes -
50 mil

0 –
1521

Defer,
Doc
Ex-
tract,
TX

X12,
Edi-
fact,
Other,
Idoc,
Ean-
com

2 0.019
-
0.036

2 2 60
bytes
– 11
mil

0 –
889

Defer,
Doc
Ex-
tract,
TX

X12,
Edi-
fact,
Other,
Idoc,
Ean-
com

When comparing the two groups in Table XIX, we note that

Group 1 has messages with bigger bytes sizes than Group 2.

The number of message splits in Group 1 is different to that of

Group 2. We note that the more times the message is split, the

faster the duration. So, we can say that Group 1’s messages

are short in duration, and this may be due to the number of

times the messages are split. Group 2’s smaller split count

may explain the increased processing time for the messages.

V. DISCUSSION

We will reference each section back to the research question

asked in Section I. At a high level, we noted that most

transactions took under one second to process and contained

many discrete values, and so it was useful to split the data

into a head and tail part.

1) Normal and Busy Periods: We split the data into these

two periods for parametric modelling as the busy period was

outside of normal conditions. Nevertheless, the normal period

with no transformations or filtering did not fit parametric or

non-parametric models. However, when we split the data using

the different EDI Modelling techniques, we fit much of the

data using parametric and non-parametric models. We note that

these EDI messages suffer from a high correlation, and caution

should be taken when undertaking modelling. We considered

splitting the data to understand the source of correlation.

We have partly answered our first research question: Can

EDI messages be modelled using parametric, or, failing that,

non-parametric techniques? We see that we can predict the

probability of specific events for random sample messages.

2) Message Split Count: We used the message split count

to help split up the head of the data. We further noted that

correlation was not fully explained by splitting on this feature.

For the Split=’1’ group, the tail of the data fitted a parametric

distribution, whilst the head of the data required further effort.

This provides a further partial answer to the first research

question: Can EDI messages be modelled using parametric,

or, failing that, non-parametric techniques? Developers could

use this splitting technique in EDI B2B messaging systems

to determine if modelling the data by the number of splits

shows an increase or decrease in message processing times.

Data Scientists could use it for selecting data when fitting

parametric models.

3) Hurdle Modelling: We implemented a Hurdle model

to remove over-dispersion. We removed the zero duration

messages as we were mainly interested in messages of a

positive duration. This approach improved the fit of the

models, but not enough to pass an AD test and did not explain

the observed correlation. When speaking to developers about

which messages they were concerned with modelling, they

were only interested in messages of a duration greater than

five minutes. This provides a further partial answer to our first

research question: When modelling such messages, it is worth

reflecting on which messages may be interesting according to

the needs of the group that will use the model, and this may

point to modelling a subset of the data.

A. Message Bundle

We noted that some messages arrived in the system as

part of a bundle, where only the last message had a duration

greater than zero seconds. Keeping these bundled messages in

the system and modelling each one individually may cause

correlation in the data due to the time dependence of the
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succession of messages and may also cause over-dispersion.

We want to identify the causes for correlation and over-

dispersion, so we consider removing them from the dataset

for modelling. This approach might weaken correlation and

reduce over-dispersion. However, implementing the message

bundle technique did not fully remove correlation from the

model, but it did weaken it. Again, this has partly answered

our first research question: bundling messages may be useful

to developers when understanding the overall service times for

each bundle and so help with understanding the service times

and inter-arrival times of the messages (especially when the

message has been significantly split). SREs might use bundles

to determine the performance load on the system based on

modelling of the scheduled time periods, as these bundled jobs

may benefit from separate modelling.

B. Scheduled Versus Un-Scheduled Messages

Scheduling of messages is important for modelling queue

behaviour and burstiness. Understanding the scheduled load

versus random load helps support queue capacity planning.

In isolation removing the scheduled messages from the data

did not remove correlation, nor did it support parametric mod-

elling. Again, we get further information on our first research

question: EDI messages can have a scheduled component that

may require separate modelling. SREs can use this insight to

separately consider scheduled frequencies of messages over

normal load. Data scientists and researchers can use it to better

model incoming jobs via service times and inter-arrival times

to better understand queue capacity.

C. Map Count

A map is a useful feature of an EDI message. These

maps have many different authors and editors. Depending

on the skill level of the map editor and the content within

these maps, they may take different times to process. We

expected that as map count might be a proxy indicator for

complexity, it might help explain correlation. We found that

a combination of splitting the data by Map Count and using

message bundling produced uncorrelated data. Thus, it seems

like a useful technique for data scientists and researchers who

want to break up correlations in EDI heterogeneous messages.

So, we have a further partial answer to our first research

question.

D. Parametric Modelling

We noted that modelling all service times or the head of

the distribution did not fit a known parametric distribution

regardless of transformation or our EDI modelling techniques.

However, we could fit the tail of the data to a known Burr

distribution. The inter-arrival times of the tail of the data were

close to a Burr-type distribution but failed the AD test.

We wanted to understand if service times and inter-arrival

times of EDI messages could be modelled effectively, and a

parametric approach was only suitable for part of the dataset. It

appears further work is required to break up this dataset which

appears to contain heavy-tailed and discrete components. Thus,

we can conclude that the dataset should be modelled using

a simple parametric method. Data scientists and researchers

can use this information to guide the steps one can take

to model these EDI messages effectively. We have partly

answered our second research question: can the ST and IAT

of an EDI message be modelled by a parametric method or

non-parametric method?

E. Non-Parametric Modelling

Modelling the head of our data for service times using KDE,

we observe a lot of white space indicating that the model does

not fit the data. However, breaking the data up by the hour, we

observe that a KDE model provides better fits to the data. From

that, we have partly answered our second research question:

can the ST and IAT of an EDI message be modelled by a

parametric method or non-parametric method? As suggested

in the previous section, Data scientists and researchers can use

this information to guide the steps one can take to model EDI

messages using a non-parametric approach.

F. Message Classification

Our third research question set out to answer whether

we can classify EDI messages. On looking at the head of

the data up to 0.036 milliseconds, we were able to classify

these messages into two groups where group 1 had a shorter

processing time than group 2. We also noted that the significant

difference between the two groups was the number of times

the message got split and the number of bytes in a message.

Further work is required to classify these messages better.

Message classification is desirable so that SREs can define

baseline metrics for the different types of EDI messages

coming into the system. The issue is the number of different

ways one can classify the messages.

VI. CONCLUSION

This study aimed to model B2B EDI messages and de-

termine if modelling was appropriate by a parametric or

non-parametric approach. Modelling this data set is quite

challenging. We noted evidence of correlation throughout the

dataset, and the understanding of correlation was difficult. We

note that a “one size fits all approach” is not appropriate;

instead, we would require a combination of approaches to fit

such data adequately. We found that the head of our data could

not be modelled using parametric techniques and that the tail

of the data fitted a parametric distribution. We also found that

a non-parametric approach was suitable to model a portion of

our data based on how we sliced the data. This work provides

a more refined study, specifically modelling heterogeneous

messages within the Cloud Supply Chain domain. By using a

parametric approach, we modelled the tail of the data using

a Burr Distribution. Modelling the data by hour fitted a non-

parametric model.

In future work, we can investigate modelling the busy period

service times and identify if that period fits a parametric

distribution. Additionally, further work is required to identify

the underlying correlation within queue service time data and
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if we can remove the correlation whether a parametric or non-

parametric modelling approach is appropriate.
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