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Abstract—This paper presents a payload-based security model
for authenticating constrained and heterogeneous constrained
devices in a smart-farm application. The domain ideally operates
with optional internet and no constant power supply, using
battery-powered microcontrollers for the monitoring and control
of aquaponics systems. The motivation was to reduce energy
consumption for extended battery life, whilst enabling a robust,
decentralised security design. Results demonstrated an annual
saving of up to 96% device battery life when compared to
recommended TLS implementation, whilst maintaining equally
high security standards.

I. INTRODUCTION

The motivations for smart-farms are manifold, including a

lower carbon footprint than traditional farming, autonomy, and

environmental control. Smart-farming sees benefits of yield

and non-indigenous crop varieties with the use of recycled

resources without manual labour. Specifically in the domain

of aquaponics [1]–[4], natural fertilisers are cycled around a

flood-and-drain-system, demonstrating a self-sustaining crop

growth environment from the symbiotic relationship between

plants and fish. Smart-farming offers many applications to

increase productivity in settings such as domestic [5], indus-

trial [6], and with livestock [7]. However, the successes of

smart-farming rely heavily on Internet of Things (IoT) infras-

tructure. For sensors and actuators to operate correctly and

continuously, downtime and interruptions have to be as close

as possible to zero, and this is where security takes the stage.

Security infrastructure can be draining on energy resources

and leave networks vulnerable to a single point of failure,

but security in general ensures reliable communications be-

tween pairs of devices. Now, established security practice

has revolved around Transport Layer Security (TLS), utilising

a negotiation process known as a ‘handshake’ to create a

client and server relationship. TLS is strong and universally

accessible to both constrained and traditional devices and their

protocols - but the energy consumption and centralisation are

problems. This research is focused on how to address the

issues surrounding TLS and PKI [8]. Such issues include

reducing the high energy consumption of TLS client and server

authentication, and removing the central vulnerabilities of

the model, whilst providing security for any communications

protocol the network will use. The aim of this research is

to remove the barriers of integrating security into constrained

networks used for smart-farming, the aims of which are:

1) Privacy; protecting private data whilst allowing selectiv-

ity of privacy.

2) Certificates; removing X.509 certificates without detri-

ment to security.

3) Session timeout; extending the connections between

entities to reduce energy use.

4) Individual protocol security; remove protocol-specific

security infrastructure.

5) Energy consumption; reducing time and power used in

authentication.

Aquaponics is used as the smart-farming domain by which

to test our security application, exemplifying the benefits of the

design to a Wireless Sensor Network (WSN). The aquaponics

network is formed of a Raspberry Pi microcomputer acting as

a central data server (or, in IoT terms, a gateway) between a se-

ries of battery-powered ESP32 microcontrollers. Each ESP32,

or edge device, operates a system composed of a fish tank and

multiple plant beds, using sensors and actuators for measuring

and impacting temperature, humidity, flood and drain, light,

and pH level. This symbiotic relationship between plants and

fish represents distribution of a natural fertiliser from the fish

to nourish plant growth, and a smart-farm which can largely

operate autonomously and remotely. The protocols used will

include Bluetooth Low Energy (BLE), Long-Range Wireless

Area Network (LoRaWAN), and HyperText Transfer Protocol

(HTTP), or WiFi. Wherever possible, BLE or LoRaWAN

should be used, as WiFi will quickly exhaust a battery-powered

microcontroller. This paper presents a study into the energy

consumption of authentication models for the ESP32:

1) Analysis of the existing authentication processes avail-

able to the ESP32.

2) Design of a decentralised authentication process with

structural differences to existing practice.

3) Testing of the differences between energy consumptions

of the two models.

II. PROBLEM BACKGROUND

The background problem is presented in three parts; expec-

tations, centralisation, and application appropriateness.

A. Expectations

The biggest problem of securing constrained devices is the

unrealistic expectations of what a microcontroller should be
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able to process, compared with a perception of adequate secu-

rity. Now, since TLS traditionally secures machines supplied

with constant power, high-bandwidth telecoms and excellent

processing capabilities, it has developed in parallel with those

provisions. However, it is more appropriate to compare micro-

controller capabilities with machines typical of the 90’s, and

their applications to suit. Constrained devices are equipped

with the protocols and power supplies to support the operations

of a smart-farm environment - the ESP32 provides suitably

small packet sizes and BLE to communicate them. Therefore

security considerations should not limit choices between a

power and processing trade-off, but how TLS can be adapted to

function effectively within an environment reflecting ‘obsolete

technologies’ [9].

B. Centralisation

TLS employs X.509 certificates to bind keys with identities.

The management of these certificates in undertaken by a Public

Key Infrastructure (PKI), typically consisting of five parts;

Certificate Authority (CA), to store and issue X.509 certifi-

cates, Registration Authority (RA), to verify entity identity,

a central directory to securely store and index keys, a man-

agement system for access and distribution, and a certificate

policy to state procedures and rules. This is a cumbersome

and delicate series of operations criticised for codependency

and vulnerabilities due to the centralised data stores [10]. PKI

is also storage-intensive, populating lists for both current and

revoked data, causing a scalability issue for IoT. The CA of

every website is hosted on its server, available to view as

current and sufficient by site visitors. Revoked certificates have

displayed as current in some browsers, and have been identi-

fied as a security flaw [11] - further disproving the value of

the X.509 system. Key escrow for certificates also undermines

privacy [12], and has been described as placing “Keys under

doormats” [13]. Official bodies are granted access to TLS

communications for law enforcement using PKI facilities [14],

with escrow hosted on servers and retaining key ownership.

Although it is possible to operate TLS without certificates [15],

there is no alternative fulfillment for verifying the identity

of the server by which you, as the client, are contacting -

and therefore without employing TLS there is no assurance

of security. In summary, even with the heavy implementation

and energy consumptions of encryption for privacy, there are

still privacy issues present. In the case of IoT applications

where the majority of data readings are benign, such a false

perception of privacy only serves to drain battery life - in

return for a questionable infrastructure.

C. Application-appropriate security

Applying TLS to any protocol comes with the same caveats

as traditional internet regulations. Although DTLS [16],

MQTTS [17], BLE-TLS [18], and μTLS [19], are lightweight

IoT applications, the restrictive and impractical stipulations

are still the same. In addition to the X.509 infrastructure,

this includes expensive privacy enforcement, and a library for

each protocol. Confidentiality, integrity and message payload

authentication are enforced by the secure channel TLS creates

between the client and server. In many ways this is positive.

Confidentiality guards against eavesdropping, integrity ensures

non-tampering, and authentication proves the message is from

the intended origin - but privacy is not always necessary.

Using TLS for any protocol has this same issue. Following

authentication, TLS uses a shared symmetric key to encrypt

and decrypt data transferred between the two devices. This key

is used by a cipher, most commonly the Advanced Encryp-

tion Standard (AES), enforcing unnecessary protection over

insensitive data. In addition, even the smallest recommended

AES key strength, 128-bits, cannot currently be broken in

less than around a million years. A final thought towards

the threat landscape of the application is use of protocols for

communications between the edge devices and the server or

central gateway [20] - beyond the 100 meter range of BLE,

it is inaccessible. Compared against the global accessibility

of traditional internet communications, the risk likelihood is

very low. For a decentralised or even distributed heterogeneous

network of IoT devices, a scheme providing a 1:M, or M:N

relationships between devices and their respective keys [21],

would have been ideal. However, the mbedtls library native

to the ESP32 does not currently provide such freedom, and

so we must proceed this study with cryptographic primitives

based on a 1:1 client-server relationship.

III. RELATED WORK

Self-signed certificates and certificate-less security are con-

sidered as related work, followed by literature references

towards energy consumption testing.

A. Self-signed certificates

There are two ways by which to authenticate the client and

server devices in the TLS connection using X.509 certificates.

The first and most traditional way is to send the device’s

Public-key and a Certificate Signing Request (CSR), to a

trusted CA, and the second is for the client (ESP32), to act as

a CA by generating a root certificate itself and signing it using

a Digital Signature Algorithm (DSA); providing verifiable

ownership and thus, authenticity. Self-signed certificates have

not typically been effective on browsers, since they come with

a warning sign that the certificate cannot be trusted due to

potential interception between client and server. However, the

IoT application will not use a browser for aquaponics readings,

and all edge devices will have a trusting relationship with the

server since they are part of the same smart-farm. This is very

different from interrogating an unknown web server possibly

on the other side of the world. Using self-signed certificates,

and the DSA, removes many problems of centralised TLS and

PKI security.

B. Certificate-less security

On the note of using self-signed certificates, certificate-less

key escrow schemes [22], have demonstrated good operation

in IoT using the DSA included in the certificate, but with

a partial private key to perform the signature. This model
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is positive towards an alternative solution for TLS, since

the devices are capable of creating key pairs and signatures

locally, thus enabling the edge devices to accept responsibil-

ity for all secure data exchanges. Outsourcing cryptographic

processing to edge devices contributes towards scalability,

robustness, and decentralisation, with the additional benefit

of energy efficiency - the ESP32 hosts dedicated hardware

acceleration for four cryptography functions. Blockchain has

demonstrated success in numerous decentralised security ap-

plications including cryptocurrencies [23], [24], and IoT [25],

[26]. Blockchain is a type of Distributed Ledger Technology

(DLT), comparable with a simple bookkeeping ledger where

the weighting of profit and expenses is agreed between two

parties, and the verification then becomes a block of data

added to an ever increasing chain [27]. Applications have

been scalable and robust alternatives to the centralised PKI,

used in industrial processes [28], farming marketplaces [29]

and harvesting [30]. There are two obvious problems with

blockchain. Firstly the use of dedicated nodes to hold the

smart contracts or consensus mechanism [31], and the full

chain [32] - and secondly the continuous mining of the chain

for verified transactions, as this quickly exhausts battery life

[33], [34], creates complexity, and subsequent security issues

[35]. The chain could be stored on the single Pi server, but

that creates a similar type of vulnerability to PKI unless there

were backup chains beyond the network, or additional nodes.

Perhaps a blockchain application for authorisation would be

more appropriate than authentication. An authorisation chain

would be considerably shorter, since not every day does a

device join the network - but it does require key reset. Since

additional device authorisation is comparatively seldom, so is

mining, transaction ‘block’ storage, and network scaling.

C. Measuring energy consumption

Energy consumption measurement methods are included as

related work specifically for the ESP32 as very low values.

Microseconds and milliwatts are the scales of time and power

respectively, that ESP-based sketches produce - the differences

between security attributes are extremely small. Nevertheless,

the impact of an effective security implementation towards

battery longevity is years compared against an inappropriate

implementation. With reference to [36], [37], the oscilloscope

has been illustrated as an effective way of measuring very

small voltage levels. With the aid of a shunt resistor of

a known value, the oscilloscope can be used to determine

current, and subsequently power can be calculated. Using a

probe of suitable amplification, units in milli-sizes can be

ascertained, and the oscilloscope has been used for suitable

accuracy for testing the ESP32 [38]. Fortunately, the ESP32

already has access to timing functions in the native Arduino

library micros() [39]). Using time and power, energy can

be calculated in millijoules (mJ), to demonstrate battery life

differences in the results.

IV. DESIGN AND TESTING

This section presents the device authentication functions and

testing framework; key generation, signing and verification,

key exchange methods, and data exchanges. The aim is to

discover the most energy-efficient authentication method for

subsequent data exchanges.

A. Key Generation

Authentication keys are required for both client and server,

and to be kept secret at least in part. These can be two very dif-

ferent asymmetric keys, or they can be a symmetric shared key

built from a contribution of data from both client and server.

Either way, authentication keys are very different to session

keys for encrypting and decrypting readings. The session key

is invoked following authentication. The authentication key

types available [40], for this study are :

1) Rivest, Shamir and Adleman (RSA); creators of an

asymmetric key pair used in Public Key Cryptography

(PKC), where the device’s publicly-available key is used

to lock a message, and upon receipt, the private key is

used to unlock the message. RSA has been used as a

long-term standard due to its strength, but is notoriously

heavy and the key bit-sizes are very large. The ESP32

hosts dedicated hardware for RSA acceleration. Energy

testing of RSA key pair generation will demonstrate

the energy consumptions of key bit-sizes 2048, 3072,

4096, 7680, and 15,360. 1024 is considered insecure,

and deprecated.

2) Elliptic Curve Cryptography (ECC); is a lightweight

approach to RSA, based on the algebraic structure of

elliptic curves over finite fields - allowing the key sizes

to be around a third of RSA sizes, but with equal secu-

rity. There are 13 curves available to the mbedtls library

for call on the ESP32, but two have been deprecated due

to insufficient strength. Energy testing of the ECC key

pair generation will demonstrate the energy consump-

tions of curves SECP224R1, SECP256R1, SECP384R1,

SECP521R1, SECP224K1, SECP256K1, BP256R1,

BP384R1, BP512R1, CURVE448, and CURVE25519.

SECP192R1 and SEC192K1 are the approximate equiv-

alents of RSA-1024 and are therefore considered unsafe.

B. Signing and Verification

The Digital Signature Algorithm (DSA), was described

earlier as the only valuable component of the traditional

X.509 certificate. Using this signature, both server and client

devices can authenticate their own key pair immediately after

generation. This means that instead of using a certificate and

associated infrastructure to prove the origin of a public-key, it

can be undertaken in conjunction with generation using one

of two methods:

1) RSA sign and verify; the message is signed with an RSA

computation of the sender’s private-key, and is verified

by the recipient by using the RSA computation of the

sender’s public-key.

______________________________________________________PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 232 ----------------------------------------------------------------------------



2) ECC sign and verify; the message is signed with an ECC

computation of the sender’s private-key, and is verified

by the recipient by using the ECC computation of the

sender’s public-key.

Energy testing of sign and verify functions for energy

consumptions can be recorded at the key generation stage,

since the key sizes and curves will influence time and power.

Therefore, key generation, sign and verify functions will be

tested together.

C. Key Exchange Methods

The key exchange method is how to set up a secure channel

in a hostile environment using either an asymmetrical method,

where one device does the majority of the processing, or

mutual authentication, where contributions are equal between

client and server device. Key exchange can be undertaken

using:

1) RSA-PKC; RSA-Public Key Cryptography is an asym-

metric method in which the session key (typically a

128-bit AES key for IoT), is encrypted using the RSA

private-key, and decrypted on the recipient side using the

sender’s public-key. The sender would have to generate

the RSA key pair first, and sign the message (AES key),

in addition to encrypting it, to demonstrate authentic-

ity as a unique and genuine sender. Fortunately, the

authentication of the client is already satisfied with it

generating and sending the session key to the server, and

only the server needs to prove its identity. Energy testing

will consist of RSA encryption and decryption firstly

for an AES128-bit key, and secondly for keys AES128,

IV (also 128-bit), and HMAC (256-bit), to represent

the additional work for the design. It also includes one

signature and verification to represent interrogation of

the server, using the lightest RSA key pair.

2) DHM; Diffie-Hellman-Merkle is the mutual authentica-

tion key exchange for both client and server to contribute

equal work under the key generation of RSA 2048 and

above. Energy testing of DHM requires the RSA key

list as with key pair generation, sign and verify. As

with RSA-PKC, this shall be performed firstly with

generating an AES128, and secondly with the AES128,

IV, and HMAC to represent the new design.

3) EC-PKC; Elliptic Curve Public Key Cryptography

would have been the lightweight equivalent to RSA-

PKC by encrypting and decrypting the AES session key

using the elliptic curves. Unfortunately, elliptic curve

encryption and decryption is not part of the standard

TLS ciphersuite (REF RFC 2948 TLS), and so it has

not been ported to mbedtls for use on the ESP32. This

cannot be tested.

4) ECDHE; or Elliptic Curve Diffie-Hellman Ephemeral,

is a key exchange method in which both client and

server create a secure channel by contributing equal

work. Each party generates and keeps their own secret

whilst exchanging a factor of that number to derive the

same shared secret key. This is mutual authentication,

and requires signing and verification for both parties.

Energy testing is undertaken by recording the group

of 11 suitable curves under the ECDHE protocol, with

a sign and verify function to represent each party,

based on the lightest curve drawn from the previous

result. As previously, this shall be performed firstly with

generating an AES128, and secondly with the AES128,

IV, and HMAC to represent the new design.

D. Data Exchanges
Data exchanges are not part of authentication, but are

important to exemplify the energy-saving differences between

normal TLS implementation and the design - they represent

sensor readings or system instructions. A structural difference

with the keys allows subsequent selectivity with the security

attributes of confidentiality (privacy), integrity, and availability.

When using key exchange methods in PKC, the asymmetric

key generation takes place on the edge device first, and then

the key is encrypted with an asymmetric key, to be decrypted

by the server, and used for data exchanges. When using

mutual key exchange methods, DHM or ECDHE, a shared

key is invoked on the premise of either RSA or elliptic curve

computation - both asymmetric. Following this initial shared

secret session, the asymmetric key can then be generated for

data exchanges. Either way round, the symmetric key(s) must

be generated at some point. In addition to this, the design

makes use of the IV and HMAC as keys in their own right.

Below are details of the data exchange attributes for testing.

1) AES; 128 bit-strength of 16 characters when implemen-

tation is defined as a byte per character for simplicity.

This is the shared secret key required for encrypting

and decrypting messages, and both authenticated devices

will store the same key until it is reset. Traditionally the

AES key represents confidentiality, or message privacy,

although many AES modes incorporate integrity and

authentication functions as well, which will also require

testing:

a) AES128 in GCM mode; Galois Counter Mode

is a complex approach weighing heavy on the

processing abilities of the ESP32, but including

integrity and authentication functions as part of

an all-in-one. This all-in-one is known as Au-

thenticated Encryption with Added Data (AEAD),

and simplifies the implementation process. This is

quickly becoming the de facto AES mode stan-

dard for TLS, and shall demonstrate the energy

consumption of a strong, simple, AEAD mode.

b) AES128 in CCM; Counter with Cipher Block

Chaining Message Authentication Code, or CBC-

MAC, is the equivalent of AES128 in CBC mode

with AEAD properties. It will be tested as three

individual functions that can be used together or

separately, for fulfillment of the security attributes

confidentiality, integrity, and authentication.

2) IV; Initialization Vector is required for CBC mode to

function. The IV is unique and can offer additional
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hardening if the same one is never used twice. In the

design, it is one of three session keys. In TLS, it is

refreshed regularly, as it is part of the session timeout

and key reset of TLS sessions. The IV will provide a

new shared session key for the design of 16 characters

or bytes.

3) HMAC; Hash-keyed Message Authentication Code is

the authentication function which can be implemented

as a key in its own right for proving the message has

come from its claimed origin. The HMAC also contains

the SHA integrity component, and therefore proves non-

tampering. SHA256 will be used for testing, and so

this additional session key is a 32-character HMAC-

SHA256.

4) Data exchange server to client; messages sent from the

Raspberry Pi to the ESP32 will most likely be long,

infrequent, and sensitive. They may contain private in-

structions, device properties, and identification of living

subjects for example. For these reasons, 256 characters

will be used as the maximum amount of a server to client

set, and the data will be fully protected, with encryption,

integrity, and authentication functions.

5) Data exchange client to server; messages sent from the

ESP32 to the Raspberry Pi will most likely be short

and insensitive readings for temperature, humidity, light

and pH levels. 16 characters can provide abbreviated

reading content and they do not need protection be-

yond integrity and authentication. For these reasons, the

design will demonstrate energy-saving capabilities of

selective AEAD, resulting from the structural changes

in the authentication process; the two additional keys,

IV and HMAC.

V. IMPLEMENTATION AND RESULTS

This section presents details on measuring the entropy and

key exchange protocols, time and power sampling to calculate

energy consumption, the six sets of results, and how the

security objectives have been satisfied.

A. Measuring entropy and key exchange protocols

When undertaking key generation, the ESP32 will employ

the Random Number Generator (RNG), hosted as part of

its dedicated hardware-accelerated cryptography block. This

generator is called by ‘ctr drbg’ in the mbedtls library - a

deterministic random number generator function. Measuring

time consumption of such a process is difficult, as entropy is

inherently inconsistent - but indicative of invoked randomness.

For this reason, a sample of ten readings for each protocol

were recorded, from which an average time could be deduced

as an example of ‘normal’ consumption time.

B. Time and power sampling

TLS and the design implementation can be undertaken very

accurately by calculating energy (measured in Joules); by

time (measured in microseconds, μS), multiplied by power

(measured in milliwatts, mW). Time can be printed to the

serial port, and power can be sampled using an oscilloscope.

The ESP IoT Development Framework (ESP-IDF), employed

the Arduino library as a component. This allowed high control

of the ESP board through the IDF’s ‘menu-config’, in order to

switch off the WatchDog Timer (WDT). Menuconfig → Com-

ponent Config → Common ESP related → Disable Interrupt

WatchDog, Disable Initialise Task Watchdog Timer on Startup.

This was important to ensure that the board did not enter

‘boot loop’, or interruption, during testing in high repetition

cycles - preventing the board from completing each task.

The micros() function from the Arduino library returned the

timing of any part of the sketch. Micros() was therefore used

to measure the context invocation, key generation, signing,

verification, and freeing of contexts without also recording the

time used for variables and serial port printing. The resulting

microseconds were printed to the serial port and recorded,

with the exception of the first result of any set, which includes

board initialisation and thus counts as an anomaly. Repetitions

of 100 loops per task were performed to eradicate errors of

single units, but produce results within a reasonable time -

loops of 1000 proved too high an expectation of the ESP32,

particularly in RSA - causing the ‘guru meditation’ [41],

or stack overflow error (despite disabling the WDT), so all

experiments undertook 100 loops to give a fair test. With the

curves requiring more entropy (bigger key strengths), even

loops of 10 took considerable time. Measuring power required

the use of an oscilloscope, to measure the voltage of the board

with a given resistance, for calculating current. Where voltage

(measured in microvolts, μV), (Ohms, Ω, provides current,

represented by the letter I (measured in Amperes, mA), power

can be derived; where voltage multiplied by current gives

power. A 5V power bank was used to ensure voltage was

consistent, and current was measured across the circuit to

provide results with a clear difference.

C. Results sets

As discussed in the design section, key pair generation with

sign and verify were tested together, and so the following

experiments were undertaken to then compare energy con-

sumptions of authentication and data exchanges between TLS

and the design:

1) Key pair generation, sign and verify

a) RSA; 5 key strengths.

b) ECDSA; 11 curves.

2) Key exchange

a) RSA-PKC; for one key (TLS), and three keys

(design).

b) ECDHE; for one key (TLS), and three keys (de-

sign).

3) Data exchange

a) From server to client; fully protected GCM and

CCM, typical of TLS.

b) From client to server; selective CCM and excluding

privacy, typical of the design.

4) Energy consumption comparison over a 24 hour period
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a) Readings; 16 character readings comparing TLS

and the design.

b) Instructions; 256 character instructions comparing

TLS and the design.

The results sets are compared in order to demonstrate the

lightest applications of security with the same standards as

TLS, but with lightweight configurations:

TABLE I. 1A) RSA KEY PAIR GENERATION, SIGN AND 
VERIFY

RSA key 2048 3072 4096 7680 15,360
Joules 1.390 4.664 11.532 113.350 Error

Millijoules (mJ) 1390 4664 11,532 113,350 Error

TABLE II. 1B) ECDSA KEY PAIR GENERATION, SIGN 
AND VERIFY

ECDSA curve SECP224R1 SECP256R1 SECP384R1
Joules 0.160 0.231 0.316

Millijoules (mJ) 160 231 316
ECDSA curve SECP521R1 SECP224K1 SECP256K1

Joules 0.526 0.246 0.285
Millijoules (mJ) 526 246 285
ECDSA curve BP256R1 BP384R1 BP512R1

Joules 2.557 4.811 9.769
Millijoules (mJ) 2557 4811 9769
ECDSA curve Curve448 Curve25519 -

Joules Error 0.057 -
Millijoules (mJ) Error 57 -

RSA demonstrated a phenomenal difference compared with

ECDSA - the lightest RSA energy consumption was around 24

times that of elliptic curve mutual authentication, despite the

dedicated RSA hardware. It was therefore pointless to carry

down RSA into a key exchange comparable with ECDHE (TA-

BLE II). Curve 448 demonstrated no entropy at all, repeated

the same key many times, and so was considered an error.

Since RSA-PKC (TABLE III), was considerably simpler

in process, it may have consumed less energy than a mutual

authentication process.

TABLE III. 2A) RSA-PKC KEY 
EXCHANGE

RSA-PKC RSA in 2048-bit
strength PKC with
ECDSA for AES
128-bit key

RSA in 2048-bit
strength PKC with
ECDSA for three
keys

Joules 1.450 1.622
Millijoules (mJ) 1450 1622

TABLE IV. 2B) ECDHE KEY 
EXCHANGE

ECDHE ECDHE in Curve
25519 with ECDSA
for AES 128-bit key

ECDHE in Curve
25519 for three keys

Joules 0.283 0.284
Millijoules (mJ) 283 284

Even with the simpler process, PKC employing RSA con-

sumed around five times more energy than the elliptic curve

mutual authentication model (TABLE IV). This would proba-

bly have been even lighter if there was an elliptic curve PKC

function available to the ESP32. Although the RSA and ECC

difference is less in key exchange than key pair generation, it

is still a huge drain of battery lifespan in comparison.

TABLE V. 3A) FROM SERVER 
TO CLIENT

Reading length in character
bytes

AES128 in GCM mode (mJ)

16 0.0224
64 0.0376
128 0.0579
256 0.0985
Reading length in character
bytes

AES128 in CCM mode with
full AEAD (mJ)

16 0.0224
64 0.0376
128 0.0579
256 0.0985

TABLE VI. 3B) FROM CLIENT 
TO SERVER

Reading length in character
bytes

AES128 in CCM without
privacy (mJ)

16 0.0189
64 0.0211
128 0.0211
256 0.0168

GCM mode encouraged in TLS showed to use energy at

an increased rate when compared to CCM (TABLE V). At

smaller data exchanges, GCM was in fact much lighter - but

at smaller levels, full protection was not required anyway and

so the saving was irrelevant.

TABLE VII. 3A) COMPARISON OF ENERGY OVER A 24-HOUR PERIOD 16 
CHARACTER BYTES IN MJ

ECDHE in Curve 25519 with
ECDSA for AES 128-bit key
with readings sent in GCM

ECDHE in Curve 25519 with
ECDSA for AES 128-bit key
with readings sent in CCM

7075.56 7075.488
ECDHE in Curve 25519 for
three keys and readings in-
cluding privacy, Pi to ESP32

ECDHE in Curve 25519 for
three keys and readings ex-
cluding privacy, ESP32 to Pi

284.4875 284.4725

GCM and CCM employed by TLS show such a drastic dif-

ference because of the full authentication process undertaken

on every reading compared with selective AEAD (TABLE

VI). If one reading is sent every hour, and each reading

requires device authentication before it can exchange data,

the process is going to show the energy consumption of

authentication 24 times. With the design, the authentication

process is undertaken every 24 hours. Between full protection

and removing privacy within the design, there is a difference
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of 0.015 millijoules. This does not sound much - it is around

5.475 millijoules a year. However, comparing the GCM of

TLS over a year, at 2,582,579 millijoules, against not using

privacy on the basis of this design, at 103,832 millijoules a

year, the design shows a decrease of annual usage by around

96% (TABLE VII and TABLE VIII).

TABLE VIII. 3B) COMPARISON OF ENERGY OVER A 24-HOUR PERIOD 256 
CHARACTER BYTES IN MJ

ECDHE in Curve 25519 with
ECDSA for AES 128-bit
key with instructions sent in
GCM

ECDHE in Curve 25519 with
ECDSA for AES 128-bit
key with instructions sent in
CCM

7077.4625 7075.448
ECDHE in Curve 25519
for three keys and instruc-
tions including privacy, Pi to
ESP32

ECDHE in Curve 25519 for
three keys and instructions
excluding privacy, ESP32 to
Pi

284.4475 284.42

A similar situation applies to instruction set sizes, at 256

bytes. Over a year, following this example, TLS using GCM

mode shows an energy consumption of 2,583,274 millijoules,

and the design gives a consumption of 103,813. In this

scenario, the design also illustrates a saving of 96%. If

authentication was undertaken every week or month compared

to TLS authenticating every hour, this would increase to

100’s, and 1,000’s of percent in energy consumption saving

- potentially changing the feasibility of security as part of a

very constrained project.

D. Satisfying the security objectives

The security objectives were introduced at the beginning

of this paper, highlighting the issues which could arise whilst

integrating TLS into an aquaponics application domain. From

the results, these security objectives can now be discussed.

1) Privacy concerns: The privacy provided by TLS is ar-

guably the opposite of what it should be for an IoT smart-farm.

Where TLS employs PKI, key escrow allows the unauthorised

browsing of data exchanges by authorities who wish to view

it, such as the government. This may not be preferable as the

‘snoopers charter’ created quite a disturbance [42]. In contrast,

benign data such as temperature and pH levels which need not

be protected are under confidentiality enforcement as part of

the TLS ciphersuite model. To rectify this unsuitability for the

aquaponics setup, the design contained no key escrow, and pro-

posed the separation of security attributes at the authentication

stage to permit subsequent selectivity. As a result, insensitive

data will not use unnecessary battery power, and unauthorised

observers will be disallowed as part of the decentralised model

made possible by edge device processing.

2) certificates: Removing certificates from the infrastruc-

ture enables authentication to operate without a centralised ar-

chitecture. This is both more robust than having a single point

of failure, and more scalable. As with certificate-less schemes,

signing and verification can be used for proving origin without

the full certificate. Asymmetric ECC cryptography was used

for sign and verify functions, utilising ECDSA as an effective

replacement for a full X.509.

3) Session timeout: With reference to [43], the table below

illustrates a comparison of key size and strength:

TABLE IX. KEY STRENGTH 
COMPARISON

AES bit key
length

RSA bit key
length

ECC bit key
length

112 2048 224
128 3072 256
128-192 4096 256-384
192 7680 384
256 15,360 512

Since 2015, NIST has recommended an RSA key size of

2048-bit size, or the ECC equivalent of 224-bit [44]. At the

time of writing, an RSA key of this size, or the equivalent

ECC key, would take an estimated 300 trillion years to break

by a classical computer, and in around eight hours using a

quantum computer. Quantum computers are not expected for

a few years, and even when commonplace, re-authenticating

every eight hours rather than every few minutes would be

advantageous to the smart-farm design. In addition, utilising

a protocol that did not allow world-wide access such as the

internet would further reduce the threat landscape. The results

concluded that by using the ECC Curve 25519 rather than

its RSA 3072 equivalent, that key generation, sign and verify

functions alone can show the ECC as a 98.7% saving. Applied

to authentication once every 24 hours rather than once a read-

ing, these energy savings demonstrate a 96% difference when

compared against modern TLS recommendations. Particularly

with the persistent client and server relationships of the smart-

farm, resetting device authentication over periods of days,

weeks or even months has proven to show 100s or 1,000s

of percent.

4) Individual protocol security: The ESP32 has demon-

strated its abilities to process cryptographic primitives and

protocols very effectively on-board, and so security can be

distributed to the edge devices within the smart-farm applica-

tion. Apart from the benefits of a decentralised model, it also

negates the need to employ TLS ciphersuites - and therefore

the rules of ciphersuites can be ignored. BLE, LoRaWAN,

MQTT, and any number of other protocols can be secured by

payload, and also selectively. The design encourages selective

privacy by separating AEAD functions available to the mbedtls

library, enabling further energy consumption reductions on any

protocol, without a library for each.

5) Testing for the lightest energy consumption: By testing

all the adequately secure ECC and RSA key sizes, the results

have shown that Curve 25519 in application of ECDHE,

is the lightest available authentication process available to

the ESP32. In addition, providing three session keys during

authentication instead of the traditional AES key alone can

provide enormous energy savings, which can be critical for

smart-farm lifespan when relying on constrained devices.
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VI. CONCLUSION AND FURTHER WORK

This study concludes that a design with structural differ-

ences to TLS, but employing the same security standards

as recommended by NIST and FIPS, can provide energy

consumption savings of around 96% on a basis of one reading

an hour, every hour for a full day. This study has ascertained

positive results for resolving concerns pertaining to TLS:

1) Privacy concerns; removing key escrow but enabling

privacy for readings has hardened overall security and

saved energy on unnecessary protection.

2) Certificates; removing X.509 certificates has enabled a

decentralised model with less overhead and less struc-

tural setup.

3) Session timeout; reducing frequency of session timeout

has proven great energy savings, less processing, and no

less protection given the strength of keys.

4) Individual protocol security; ciphersuite regulations and

individual libraries for each protocol are no longer an

issue since data can be secured by payload.

5) Lowest energy consumption; studying the available au-

thentication mechanisms and applying IV, integrity, and

availability keys to the session setup has hardened

security whilst permitting selective privacy - further

contributing to the energy saving of 96%.

Further work could include Elliptic Curve Public Key

Cryptography (EC-PKC), where the session keys AES, IV and

HMAC are generated at source and then encrypted using the

lighter elliptic curve alternative to RSA. Unfortunately, EC-

PKC is unavailable to the mbedtls library since it is not part

of the TLS suite, yet RSA-PKC is available - despite the high

energy consumption. EC-PKC using Curve 25519 could be an

even lighter alternative to ECDHE. In addition, cryptocurrency

technologies are also utilising Zero-Knowledge Succinct Non-

interactive ARgument of Knowledge (ZK-SNARKs) [45], or

the ‘secret cave’ protocol [46], as a keyless authentication

mechanism currently used in Z-Cash [47]. Cryptocurrencies

in general and blockchain applications such as IOTA are

exemplifying lightweight capabilities suitable for IoT - even

if only for the authentication mechanisms and not to store the

blockchain itself.
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