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Abstract—Driver distraction and fatigue have become
one of the leading causes of severe traffic accidents. Hence,
the systems that implement driver monitoring systems are
crucial. Usually such systems used a monocular camera to
recognize driver behavior. Even with the growing
development of advanced driver assistance systems and the
introduction of third-level autonomous vehicles, this task is
still trending and complex due to challenges such as in-
cabin illumination change and the dynamic background.
To reliably compare and validate driver inattention
monitoring methods a limited number of public datasets
are available. The paper proposes a methodology for in-
the-wild dataset creation of vehicle driver for recording an
oculomotor activity, a video images of a driver as well as
relevant smartphone sensors that track vehicle movement.
Based on the methodology we plan to conduct in-the-wild
experiments.

I. INTRODUCTION

Transportation plays a vital role in individual and social
welfare, the economy, and quality of life. Its benefits,
however, are not a free lunch. Society pays in terms of money
(for vehicles’ purchase, operational, and maintenance costs),
social and ecological costs (resource utilization, exhaust and
noise pollution, traffic jams), fatal or harmful traffic accidents,
and so on [1].

Fatigued driving is one of the main causes of traffic
accidents. Research shows that the probability of traffic
accidents caused by fatigued driving is five times higher than
normal driving. The annual traffic accidents caused by fatigue
driving account for about 20% of the total accidents,
accounting for more than 40% of the serious traffic accidents

[2].

According to the global status report on road safety
conducted by the World Health Organization (WHO) in 2015,
1.25 million traffic-related fatalities occur annually
worldwide, with millions more sustaining serious injuries and
living with long-term adverse health consequences; road
traffic injuries are currently estimated to be the leading cause
of death among young people, and the main cause of death
among those aged 15-29 years. Road safety perception cannot
be detached from the analysis of the driver behavior as the
major part of traffic accidents is caused by human factors as it

was inferred that they took part in the manifestation of 95% of
all accidents [3].

If the current tendency lasts for a decade, an increased rate
as high as 60-70% of road accidents could make it the 5th
main cause of death by 2030. In monetary terms, the costs
involved in road accident damages are estimated at more than
half a trillion USD, which makes nearly 2% of the gross
national product (GNP) of advanced economies, 1.5% of GNP
of medium-income countries, and 1% of GNP of low-income
countries [1].

Therefore, it has a great practical significance to monitor
driver’s fatigue status as well as response warning information
in time.

Many studies have focused on modeling driver behavior,
either for commercial purposes, management functions, or
awareness campaigns. Their main goal is to explain the
correlation between driver behavior and other factors through
their model. It is a complex system characterized by a wide
variety of variables and it has been proven that the majority of
accidents are caused by human errors such as conscious law
violations, distraction, inattention, fatigue, etc. The evolution
of this area of study is made possible thanks to the progress of
data analysis methods over the years. The development of
these approaches improved the quality of driver behavior
analysis and opened the door for new fields of applications [4].

The paper proposed a methodology for in-the-wild driver
monitoring dataset formation that includes such tracking
parameters as a driver’s face and body image, data from eye
tracker as well as vehicle telemetry. In the scope of the
methodology we defined the sequence of actions that should
be implemented for the dataset formation starting from the
selection of participants for the experiment and the actions
they perform to the sensors used and the analyzed parameters
of the participants. The presented methodology has been tested
in-the-wild to most accurately correspond to reality. In any
case, the methodology created at the initial stage will be
changed and supplemented during the experiment. Operation
in-the-wild is complex and unpredictable, so it is impossible to
take into account all possible factors and risks.

The structure of the paper is as follows. In Section Il we
present the related work in the topic of methodology for
dataset preparation of vehicle drive. Section III describes the
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proposed models and algorithms of driver drowsiness
detection. Section IV describes the proposed methodology that
is based on the considered related work analysis. Section V
describes the testing of the proposed methodology on a PC
operator. The conclusion summarizes the paper.

II.

In the paper [5], the method predicts the kinematics of vehicles
that cover coverage patterns covering various driving patterns
in normal driving. The online monitoring scheme is designed
using an exponentially weighted moving average (EWMA)
and a cumulative sum (CUSUM) chart that detects abnormal
average lateral speeds and lane position prediction errors to
warn of distracted driving.

RELATED WORK

In the paper [6], the dataset is mainly composed of two
sets: the first one recorded in the daytime and the second one
at nighttime. Each set consists of two synchronized data
modalities, both from frontal and side views. More than 60
drivers are asked to execute 16 in-vehicle actions under a wide
range of naturalistic driving settings. Dataset presents multiple
modalities, spectrums, and views under different time and
weather conditions.

In the paper [7], the study aims to optimize the Long Short-
Term Memory (LSTM) model for phone usage detection
based on vehicle dynamics sensor data from Shanghai
Naturalistic Driving Study (SHNDS), China. A total of 1244
phone use events were extracted from videos of SH-NDS and
analyzed against the focus driving baseline. Performance
attributes included speed, longitudinal acceleration, lateral
acceleration, lane offset, and steering wheel rate. Their mean,
standard deviation, and predicted error (PE) were calculated
and derived from 15 indicators. A Bidirectional layer and
attention mechanism were added to the LSTM model for
higher accuracy.

In the paper [8], the algorithm for the detection of drivers’
manual distraction was proposed. The detection algorithm
consists of two modules. The first module predicts the
bounding boxes of the driver's right hand and right ear from
RGB images. The second module takes the bounding boxes as
input and predicts the type of distraction. 106,677 frames
extracted from videos, which were collected from twenty
participants in a driving simulator, were used for training
(50%) and testing (50%).

The paper [9], provides an overview of driver distraction,
then presents the available datasets and explores various
signals for driver distraction analysis. After that, two forms of
driver distraction (visual distraction and manual distraction)
are analyzed separately.

In the paper [10], two generalized linear mixed models, one
with at-fault safety-critical events (SCE) and the other with
all-cause SCEs as the outcomes, was developed to compare
the odds associated with common distraction types using data
from the SHRP2 naturalistic driving study. Results: Adjusting
for the environment and driver variation, 6 of 10 common
distraction types significantly increased the risk of at-fault
SCEs by 20-30%. The three most hazardous sources of
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distraction were handling in-cabin objects (OR = 14.3), mobile
device use (OR = 2.4), and external distraction (OR = 1.8).
Mobile device use and external distraction were also among
the most commonly occurring distraction types (10.1% and
11.0%, respectively).

In the paper [11], naturalistic non-essential task
involvement (NEST), a subset of SHRP2 data, was used to
analyze non-essential task involvement and off-path (not in the
direction of travel) gaze. In addition to assessing their
relationship to environmental requirements, the age of the
driver and the selected speed were taken into account. Results.
Environments with higher visual complexity (characterized as
visually complex and/or low visibility) were associated with a
reduced likelihood of performing a secondary task, as well as a
decrease in off-path looks, especially longer ones (>2 s).
Drivers aged 35 and older were less likely to glance to the side
than younger drivers. An increase in speed was associated
with a decrease in the likelihood of completing the task under
conditions of higher motor control complexity (characterized
as poor surface conditions and/or a curved road), but not under
conditions of lower complexity.

So, there is no dataset of oculomotor activity of drivers,
together with video images of the driver as well as vehicle
telemetry in-the-wild. Therefore, it is necessary to record such
a dataset yourself. Driving in-the-wild depends on a large
number of factors. Creating such a dataset in-the-wild is a very
difficult task. Therefore, the creation of a methodology for
creating a such dataset is a very urgent task.

III.  FATIGUE DETECTION

We presented the reference model of driver drowsiness
detection in detail in our paper [12]. We highlighted
parameters that we are used for discussed in the paper
methodology (see Fig. 1). Based on the static parameters, we
obtain dynamic parameters, which can be calculated using
computational parameters. Then we can detect fatigue,
drowsiness, or loss of concentration. For example, consider
temperature. If the temperature has dropped by 1 degree, then
this indicates drowsiness.

The proposed algorithm for determining fatigue by eye
movement (Fig. 2). If a person has extra-long gaze fixations,
then this indicates fatigue. Also, extra-long gaze fixations may
indicate the appearance of tunnel vision. The trajectory of gaze
is associated with randomness and orderliness. If a person has
a chaotic gaze, then this indicates fatigue. The moving gaze
reflects the change in the tracing characteristics of the gaze,
which suffer from fatigue. If the gaze moves in jumps, then
this indicates fatigue. Two examples of eye movements
indicative of fatigue are presented in Fig. 3. On the left half of
the figure is an example of tunnel gaze, on the right half is an
example of a chaotic gaze.

PERCLOSE is calculated automatically by Drive Safely
system. The system takes images of the driver head for two
seconds. Based on these images the system detects if the eye is
opened or it is closed. After that, it calculates the number of
closed eyes and divides it into the overall number of frames.
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Fig. 1. Fatigue reference model

We proposed to calculate the distribution areas of gaze
fixation points (circle) and saccades (lines). They are
determined by the length of the trajectory of gaze movement.
A circle with a radius of 100 pixels is drawn with the center at
the gaze fixation point, in which the gaze moves. This radius
value was chosen empirically. If the gaze is in this circle for
more than 3 seconds, then an extra-long fixation is detected
and fatigue is registered. If the eye goes beyond this circle,
then a new circle and a line are drawn that connects the centers
of the old and new circles. We propose to draw three circles.
The circle in which the eye is currently located and 2 previous
circles and lines between them. The trajectory of gaze
movement is calculated by the formula (1).

traj = \/(xz —x)%+ (2 — ¥, (1

where  (x1,¥1), (x,,y,) - coordinates of successive gaze
fixation points. The speed is calculated according to the the
formula (2).

V=2
t

@

where V - eye movement speed, S - the length of the path
traveled by the gaze in time t, t = 0.5 seconds. S is calculated
using the formula (3).

S=S.+S,, 3)

where S, - length of the path traveled by the gaze in a circle,
Ss - the length of the path traveled by the eye between the
circles. Gaze speed is updated 1 time every 0.5 seconds.

I. METHODOLOGY

We developed the methodology for dataset formation of

Computational parameters The resulting level

| Standard deviation of intervals NN SDNN <

141 +/- 39 ms

Peak EMG signal coefficient F. > 0,15

Heart rate decreases
Voltage U=50 uV

Oxygenated hemoglobm HhO2 > 2

The frequency of the alpha thythm v, = 7-9 (Hz)
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|_ Not used in the methodology

oculomotor activity of drivers together with video images of
the driver and other relevant sensors to automate recording the
data in-the-wild environment.

Fatigue

Normal
condition

Fig. 2. Algorithm for determining fatigue based on eye movement

A. General Description

The developed methodology allows creating a dataset of a
driver oculomotor activity (Fig. 5). We identified the
following main phases: (1) preparation phase; (2) before
driving phase; (3) during driving phase; and (4) after driving
phase.

During the preparation phase participants first take a
Gottschaldt test (see Section IV, B) to detect field dependence-
field independence. We decided that the experiment requires 9
field-dependent and field-independent men and 3 field-
dependent and field-independent women. Also, the list of
maneuvers should be determined in this phase. We decided
that the travel time should be approximately 50 minutes.
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Fig. 3. Eye movements indicative of fatigue. Tunnel gaze (left), chaotic gaze (right)

During the driving phase the driver should estimate his/her
degree of fatigue based on Karolinska Sleepiness Scale. While
driving, the indicated maneuvers must be performed. Eye
tracker from Pupil Labs measures the gaze direction as well as
obtain images of the road and the direction of the driver's gaze.
We used the developed earlier platform to collect the vehicle
telemetry data. To record the data in the vehicle cabin we used
Drive Safely mobile system [13] developed for Android-based
smartphones. The system is a driver assistant and monitoring
system which is responsible to detect dangerous situations in
vehicle cabins and provide recommendations to the driver as
well as collect all information got to the cloud server [14].
Also, Drive Safely allows to detect such parameters as
PERCLOS, respiratory rate, angles of rotation and tilt of the
head, mouth openness using the incabin camera. Using the
camera installed in the car, such parameters of the driver as are
detected.

During the after driving phase the driver also estimates
his/her fatigue level based on Karolinska Sleepiness Scale. We
show an example for dataset formation in the vehicle cabin in
Fig. 6.

B. Gottschaldt test

The Gottschaldt test is carried out to detect field dependence
and field independence (Fig. 7). This test detects individual
differences in cognitive activity, the degree of freedom from
external referents, or, in other words, the degree of orientation
of a person when making decisions to his/her knowledge and
experience, and not to external guidelines if they conflict with
his experience.

2 2,5 3

field dependence MFD MFI field independence

Fig.4. Field dependence-field independence scale

Preparation Before Driving During Driving After Driving
Gottschaldt E' Karolinska | Il Record a Driver Video ! Karolinska |
Test i Sl;eprlless | @ , - i Sleepness |
,:::::-_-_-_-_-_-'-'-'-'-'-': T C_ a“e ______ ,,l El Perform Maneuvers =\\ Scale ,.l
i List of @ S| T
Maneuvers f "‘
Formation “ﬁ i Calculating the direction of gaze ‘
A i Vehicle Telemetry

Fig. 5. Proposed Methodology
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We highlighted the following characteristics of field
dependence and field independence people. For field
dependence people.

More sociable, like social contacts.
Choose a kind of occupation in which the means of
activity are predetermined, stipulated, prefer the
collective performance of the task.
Are more prone to all sorts of illusions of perception.
Synthetic perception.

e Eye movements.

O
O

Global image analysis (general to specific).
More scatter of fixation points on the image.

Characteristics of field independence people.

e  More successful in intellectual activity.

e Choose a field of activity that requires high
independence in the means of achieving the goal.

e  The perceived "picture" is much more structured than
field-dependent ones.

e The perceived object, the qualities of the object are
perceived independently, separately from other
objects, the qualities of these objects, are perceived
simultaneously with this object.

e  Analytical perception.

e Eye movements:

o Local image analysis (from the particular to
general).

o Less scatter of gaze fixation points on the
image.

Eye Tracker
Pupil Labs

Fig. 6. Dataset formation in vehicle cabin

C. Karolinska Sleepness Scale

As mentioned before the experiment requires 9 field-
dependent and 9 field-independent men and 3 field-dependent
and 3 field-independent women. Before driving as well as
after driving every driver should estimate his/her degree of
fatigue using the Karolinska Sleepiness Scale to detect the
degree of their fatigue. We show Karolinska Sleepiness Scale
in Table L.

D. Maneuvers and route

While driving, the subject performs the following maneuvers:
e  Crossroads (from 10 pieces)

e  Pedestrian crossings (from 10 pieces)

e  Spreads (from 3 pieces)

e Changeovers (on the freeway 5 pieces)

e Detour, overtaking (on the freeway 5 pieces)
e Parking (1 piece)

e  City roads up to 60 km/h, freeways 110 km/h

Travel time is approximately 50 minutes. Below is an
example of a route starting from the SPC RAS (Fig. 7).

IL.

Before testing on the driver, the methodology was tested on
the PC operator since it is more simple task. Below in Fig. 8 is
an example of calculating oculomotor parameters for a PC
operator. Here the area of gaze fixation points, gaze movement
trajectories, current gaze movement speed, the average speed
for all videos, the minimum speed for all videos, maximum
speed for all videos are calculated.

EXPERIMENTS

TABLE I. KAROLINSKA SLEEPINESS SCALE

Description Point

Extremely alert 1

Very alert

Alert

Rather alert

Neither alert nor sleepy

Some signs of sleepiness

Sleepy, but no effort to keep awake

<] EN] ko)) AL T F R OS] § )

Sleepy, but some effort to keep
awake

Very sleepy, great effort to keep 9
awake, fighting sleep

Extremely sleepy, can’t keep
awake

34
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Fig. 7. Route from the Institute of St. Petersburg FRC RAS
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Fig. 8. Calculation of oculomotor parameters for PC operator

Fig. 9. Oculomotor parameters in a normal state

Fig. 10. Oculomotor parameters in a fatigue state

We show in Fig. 9 examples of calculating oculomotor
parameters in the morning in a state of alert and in the evening
in a state of fatigue in Fig. 10. As can be seen, the average
speed of eye movements in the evening is lower than in the
morning. Recordings were made in the morning and evening
for 4 days. As can be seen from Table II, the average values of
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the average, minimum, and maximum speed during the state of
fatigue are lower than in the state of alert.

TABLE II. AVERAGE VALUES OF THE PARAMETERS IN THE STATE OF
ALERT AND IN THE STATE OF FATIGUE

Driver Average Minimum Maximum
speed speed speed
(px/sec) (px/sec) (px/sec)

g 1 375 42 2988

2 2 357 36 2954

& 3 430 40 3362

© 4 268 20 4016

£ [ Average 357 345 3330
e value

1 435 46 3268

5 2 351 38 3582

< 3 493 48 3472

Q 4 373 38 4462

S | Average 413 42,5 3696
value

VI. CONCLUSION

Using Pupil Labs glasses, the gaze movements of the PC
operator were recorded at the beginning of the working day
and at the end of the working day, when fatigued. The average
values of the average, minimum and maximum speed during
fatigue are lower than in the state of alert. Using the camera
installed in the car and mobile app Drive Safely, such
parameters of the driver as PERCLOS, respiratory rate, angles
of rotation and tilt of the head, mouth openness are detected.
Using glasses for calculating the direction of gaze Pupil Labs
obtain images of the road and the direction of the driver's gaze.
Using GPS/GLONASS, speed and acceleration are
determined.

For the future work we plan to record 20 videos in the state
of alert and 20 videos in the state of fatigue. At the first stage,
compared according to the following parameters: (1) average
speed for all videos; (2) the minimum speed for all videos; (3)
maximum speed for all videos. At the second stage we plan to
compare according to the following parameters: (1) gaze
fixation duration; (2) trajectory of gaze movement; (2) moving
gaze.
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