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Abstract—Microservices technology has gained considerable
popularity in software design to deploy complex applications
in the form of micro-modular microservice components. Each
service is implemented as an autonomous system, and its internal
constituent data can be accessed via a network interface. Such
architecture increases the complexity of the network because each
module is a separate entity for development and operations. A fault
in any service affects the operation of another service and could
completely break the application. It is, therefore, necessary to
create a framework for the systematic testing and resilience of the
network link in microservices, independent of the programming
language and business logic. It helps the network administrator
track the cause of the fault. In this paper, we have shown the
use of the service mesh Istio to monitor communication between
microservices and to develop automated testing and resilience.
Istio provides various types of fault injectors for communication
links between services. A Locust load testing tool is used to exert
a microservice load. The faulty link is located via the Jaeger
and Grafana dashboard within the Istio frame. For resilience or
correction of the fault, a new connection is temporarily established
between the affected microservice by deploying redundant services.
In addition, microservices scaling and the implementation of the
circuit breaker have been shown to remedy network congestion.
The setup is demonstrated in the Kubernetes cluster with the
Hipster shop e-commerce application.

I. INTRODUCTION

Cloud applications are moving from monolithic architecture

to microservice architecture. Microservice is a software devel-

opment technology that organizes an application to loosely

linked services[1] each serving a part of the application.

The decomposition of an application into various smaller

services has many advantages. It facilitates the application

to understand, develop, test, deploy and monitor. In application

development, it allows separated teams to independently

develop their respective services. New features and updates

are continuously added to a service without affecting other

parts of an application, making it highly dynamic. It also

eliminates the dependency on a single technology stack because

individual services can run with different technology if it is

loosely connected. Different programming languages can be

selected for each service, and communication occurs via remote

API calls. As a result, microservices must be resilient and

trustworthy in order to facilitate communication. Despite these

benefits, microservices have a few limitations. It is difficult to

manage communications between services, i.e., service requests

should be properly controlled. Any failure at one service can

impact the operation of another, and this can extend all the way

to the remote user level. As a result, it requires a framework that

continuously monitors the communication link across several

microservices and recognizes a victim link in the case of a

problem. These tests must be automated and methodical, with

feedback, so that the application administrator can orchestrate

a specific failure, obtain a thorough explanation of the fault,

and automatically correct the failure in the future. This may

improve the application’s resilience—ability to recover from

failure. In addition, such feedback makes testing more valuable

than a randomized injection of faults by enabling application

developers to instantly locate and solve fault management logic.

This paper demonstrates such a framework using a popular

tool Istio.

The service mesh Istio [2] is an open-source tool for

deploying an application and collecting monitoring signals

to capture traces of communication between microservices.

Service mesh refers to the microservice network that makes

up applications and their interactions. The larger the size

and complexity of the mesh, the more difficult it is to

understand and manage. The state-of-art that uses Istio to

manage microservice applications are [3], [4], [5], [6], [7]. A

guide to deploy and run the Istio is available in [8], [9], [10].

A lecture was given at the SREcon’18 conference organized by

USENIX [4] and SIGMOID’18 conferences organized by ACM

[11] to demonstrate the use of Istio in Kubernetes. A survey

paper of G. Schermann et al. [12] have described in their work

that Istio is a leading tool for building a microservice mesh to

run an application and meets complex operational requirements

such as testing and proxy-based traffic routing. A survey on

the history and future challenges of microservices [13] has

also made a similar quote on Istio.

In the microservice application, each service has several

dependencies between each other. Separate teams working

on different microservices continue to add new features to

their respective service. It is, therefore, necessary to set up

an environment with all dependencies in which functional test
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cases can run from end to end. Various tools for testing (or

loading) e.g., JMeter, Tsung, Gatling, Grinder, etc. are available

for testing each application microservice, but no detailed

network traces, monitoring, and logs are given. Although these

tools can locate the fault, the reason for the fault remains

unknown. Such details are necessary for resilience in the

application. Such information has traditionally been extracted

through rigorous manual testing and log collection for each test

set. Under this scenario, the expertise of network administrators

determines the type of knowledge gained and the amount of

knowledge transmitted to their teammates.

In this work, these details are extracted directly from an

open-source tool called Istio. A load test tool Locust has

been integrated with Istio to build an automated microservice

testing and resilience framework. It contains all the related

libraries and packages for any microservice application. The

resilience is strong if every part of the application handles

reasonable errors and defects. Either unavailability, network

congestion, latency, caching, or database problems, the use

of distributed microservice fulfills these implicit requirements

and corresponding handling. The designed framework can test

these complications and automatically correct the fault. This

work makes the following key contributions:

1) Steps to deploy applications microservice in Istio mesh

with backend as Kubernetes.

2) Different rules of fault injection mechanisms in microser-

vices.

3) Three types of fault-resiliency mechanisms with their

implementation scripts.

The paper is organized as follows. The prior representative

publications most related to this work are surveyed in Section II.

Section III describes a methodology where the details of Hipster
application, Istio, monitoring and load testing mechanisms are

explained. The testing implementations are given in Section IV.

The use of the Locust tool for fault injection and its detection

over the dashboard is explained. The scripts and YAML code

of each experiment are also presented. The resiliency methods

are then explained in Section V. Three types of resiliency

methodology, including scaling, failovers, and circuit-breaker,

have been demonstrated. Finally, the paper concludes in

Section VI.

This work is a part of the first author’s Ph.D. thesis titled

”Automated Management of Cloud Application Using Machine

Learning Techniques” [14].

II. LITERATURE REVIEW

In [15] an empirical method for automated testing has

been presented. Software agents are used to capturing each

component’s behavior for testing specifications. Formal agent

specifications and automated testing of microservices are inte-

grated and fed into the automated test engine to run against the

actual microservice code. The application for the development

of the curriculum Lasta has been used as a testbench. Two

frames are used, one for unit testing (RSpec) and the other

for acceptance testing (Cucumber). A Gremlin framework has

been produced in [16] to test microservice failure handling

capabilities systematically. It is based on the behavior that

microservices exchange messages over the network are loosely

linked. It performs microservice testing by manipulating inter-

service messages on the network layer. It has a python-

based code describing a high-level breakdown scenario and

a set of rules on how microservices should react during this

breakdown. It has a data plane composed of network proxies

to intercept, log, and manipulate messages exchanged between

microservices and control planes to configure network proxies

for injection of faults based on rules. Another representative

work [17] provides an experimental assessment of performance

interference between microservices in one or more containers.

Experimental evaluations are carried out using HPC-based

microservices to investigate the interference problems caused

by the location of microservices in single or multiple containers.

The result gives a detailed insight into microservice perfor-

mance variation. The need for new performance engineering

solutions for microservices is examined in [18]. Open problems

with performance tests are identified, and possible research

guidelines for testing, monitoring, and modeling microservices

are outlined. In particular, the focus is on strategies for

efficient performance regression tests, continuous software

change performance monitoring, and appropriate performance

modeling concepts for shifted use cases. In [19], an analysis

of the existing literature on cloud applications testing has been

carried out. A validation methodology for the microservice

systems using the Mjolnir platform is proposed on the basis

of the analysis. The functional unit, a load unit, security

unit, integration, and system are included in the validation

set. A learning-based test (LBT) is performed in [20] to

assess the functional correctness and robustness of distributed

systems to injected defects. It combines machine learning with

model checking, integrated with the application in a feedback

loop. A distributed microservice architecture for the credit

risk analysis of counterparties called triCalculate is used. It

claims to be successful in detecting application errors using

models with low fidelity inferred, injection, and test case

evaluation using LBT wrapper constructs and formal modeling

of correctness and robustness. A reusable automated acceptance

test architecture for microservices behavior-driven deployment

(BDD) is discussed in[21]. The test architecture claims to

improve the auditability of BDD steps, their re-usability, and

the separation of concerns between developers, testers, and

business analysts.

III. FRAMEWORK SETUP AND METHODOLOGY

A. Hipster Shop applicaiton

An application named ’Hipster shop’ [22] is selected to

conduct the experiments in the Istio service mesh. Nevertheless,

our testing and resiliency mechanism has no dependency with

the internal constituent of Hipster shop application. Our setup

could be effectively used for any cloud applications, e.g.

bookinfo [23], Sock Shop [24], E-shop [25], etc. ’Hipster
shop’ is a 10 − tier web-based e-commerce application

where users can browse, add, and purchase products. The

microservices of this application are available in python, java,
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Fig. 1. Hipster shop application deployed in Istio service mesh

TABLE I. HIPSTER SHOP MICROSERVICE DETAILS

Service Language Description
Frontend Go Exposes an HTTP server to serve the

website.
Cart service C# Stores the items in the user’s shipping cart

in redis.
Productcatalog Go Provides the list of products from a JSON

file and search them.
Currency Node.js Converts one money amount to another

currency. Uses real values fetched from
European Central Bank.

Payment Node.js Charges the given credit card info with
the given amount and returns a transaction
ID.

Shipping Go Calculates shipping cost based on the
selected products. Ships items to the given
address

Email Python Sends users an order confirmation email.
Checkout Go Retrieves user cart, prepares order and

orchestrates the payment, shipping and
the email notification.

Recommendation Python Recommends other products based on
products in the cart.

Ads Java Provides text ads based on given context
words.

Loadgenerator Python/
Locust

Continuously sends requests simulating
the user shopping flows to the frontend.

go, c#, and javascript. In Fig. 1, the application setup and

communication links between microservices are displayed by

an arrow. Table I shows the details of each microservice.

Microservices communicate with each other via the gRPC

system [26] (grid remote procedure call).

B. Istio Service Mesh

In our experimentation, the Istio service mesh has been

installed on Ubuntu 16.04 virtual machine. Istio platform has

backend as Kubernetes, which is set up on a single node

cluster using minikube [27]. Istio is a platform to deploy,

connect, manage, and secure microservices. It provides an

easy way to create a network of deployment, load balancing,

and monitoring services. It also provides behavioral insights

and operational control over the entire service mesh. Istio
allows describing a network of load balancing services, service-

to-service authentication, monitoring, and more in a YAML
file without any change in service code. YAML (yet another

markup language) is a data serialization language mostly used

for writing configuration files for an application. Such YAML
file could easily deploy the application configurations through

Kubernetes API (kubectl create -f <yaml-file-name>). A Istio
support is provided through the deployment of a special sidecar

proxy throughout the application. This proxy intercepts all

network links between microservices and configures according

to the rules defined in the YAML file. The list of features that

are provided by Istio and we have used in our work includes:

• automatic load balancing for HTTP, gRPC, WebSocket,

and TCP traffic.

• control of traffic behavior by routing rules, retries,

failovers, and fault injection.

• policy layer and configuration API for access controls,

rate limits and quotas.

• collect metrics, logs, and traces for all traffic.

• secure communication with strong identity-based authen-

tication and authorization.

C. Monitoring

Tracing, monitoring, and logging provide a deep understand-

ing of the service mesh and how one service impacts upstream
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and downstream services. Istio provides the Jaeger dashboard

[28] to collect each microservice’s monitoring metrics and

logs. The dashboard also gives visibility to the performance of

all services. The monitoring metrics include IP address, port

numbers, request type, completion time, the quantity of data

sent and received, etc. In addition to the Jaegar dashboard,

Istio also provides the Prometheus [29] and the Grafana

[30] dashboard to view service traffic data. An open-source

container monitoring tool crawler [31] is used to obtain further

information on the processes and connection URL information

of each microservice. It provides the details of a container (in

this case, microservice), including CPU usage, memory usage,

process status, number of connections to the active processes,

etc.

D. Fault Injection

Purposefully creating events that cause services to malfunc-

tion is called fault injection. It is a way to simulate the effect

of errors commonly occurring in cloud services, such as forced

increases in resource pressure or a network interruption. There

is no standard fault injection method—it is a simulation of

pushing systems to the breakage point to anticipate the scenario

and determine how to respond to such a situation. Istio provides

the ability in each microservice to change the routing rules

and inject faults. We have used two types of fault injection.

1) HTTP Delay: Delays are timing failures that simulate

increased network latency or an upstream overloaded

service. It injects delays in the communication between

two microservices. The delay amount is specified in the

YAML file. Suppose the request fulfillment time limit is

smaller than such a delay, then the application crashes.

A bug like this often occurs in enterprise applications

where different teams independently manage different

microservices. The delay test helps to identify these

anomalies without affecting the end-users.

2) HTTP Abort: Aborts are crash failures mimicking up-

stream service failures. Aborts usually appear in the form

of HTTP error codes or TCP connection failures. In

contrast, to delay, it aborts the HTTP request immediately

and displays user-specified error codes, e.g., Mail HTTP
status 500 internal server error.

Istio allows the configuration of defects based on specific

conditions to match and limits the portion of traffic to be

subjected to a defect. For example, in the YAML file, the

2sec delay between checkout and payment service for user

tomcherry at 30% traffic and HTTP abort at 20% traffic may be

described. In this case, 50% of traffic requests from tomcherry
is normally fulfilled. Further, all the traffic for users other than

tomcherry is also normally fulfilled. These attributes enable to

mimic various failure scenarios such as service failures, service

overloads, high network latency, network partitions, inbound

traffic limits, etc.

E. Load-testing

It is a kind of performance test that determines the perfor-

mance of an application under real load. This test shows how

the application works when many simultaneous users access

the application. An open-source tool Locust [32] has been used

in this work. During a test, Locust generates a large number of

virtual users to swarm different application microservices. The

behavior of each virtual user is described in a python script

(commonly called locustfile.py), and the swarming process is

monitored in real-time from a web interface. It also allows

minimum and maximum waiting time per simulated user to

be specified between the execution of tasks. Unlike other load

testing tools, Locust does not use callbacks for each virtual

user [32] and uses a separate lightweight process.

IV. TESTING IMPLEMENTATION

A. Application Deployment

Each microservice of Hipster application, shown in Fig 1,

is described in a YAML file. The microservice consists of a

deployment and service object. The deployment contains pod

details, including image, replica number, CPU, and memory

resource allocation for the pod, labels, port number, entry

point, etc. It is to be noted that there can be multiple pods in a

microservice. Alpine Linux is used for all pods as a base image.

Built with Dockerfile, this image is pushed into the docker

registry. The URL for communication with other microservices

is added in the YAML file as an environment variable. Such

URL is generated by the label and the exposed microservice’s

port number. The service object is an abstraction of the pods

which define the access policy. The YAML service file contains

a component called selector and targetPort which specifies

the name and port of the pods the service targets. The YAML
service file also specifies a service port number to receive a

request for access. As shown in Fig 1, the internet is only

open to frontend service. Other services, therefore, be accessed

externally from the cluster. Such attributes are described in

YAML as type—frontend service with type: LoadBalancer while

type: ClusterIP for other services. Each of the microservice is

deployed using Kubernetes API: kubectl create -f <YAML-file-
name> (in default namespace). After deployment, the Istio-
sidecar-injector automatically injects Istio’s Envoy containers

into each of the application’s pod through the command: kubectl
label namespace default istio-injection=enabled. The applica-

tion is accessed using http://localhost:port-number, where port-
number is obtained from istio-ingressgateway. The command:

kubectl get services -n istio-system istio-ingressgateway is run

and port-number mapped with port 80 of istio-ingressgateway
is used.

B. Collecting network traces and metrics

Application is accessed using http://localhost:port-number
from the browser multiple times to create network traces.

Then Jaeger dashboard is opened by http://localhost:16686,

where the port 16686 is forwarded from Jaeger pod to

host using command: kubectl port-forward -n istio-system
(kubectl get pod -n istio-system -l app=jaeger -o json-
path=’.items[0].metadata.name’) 16686:16686 . The screen-

shot of the dashboard in Fig. 2 shows one of the traces of

the payment microservice. The trace consists of a collection

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 82 ----------------------------------------------------------------------------



Fig. 2. Jaeger dashboard showing the traces for payment microservice

Fig. 3. Jaeger dashboard showing the details of traces for payment microservice

of spans in which each span corresponds to an application

service Hipster shop and Istio-envoys invoked during payment

service. As shown in Fig. 1, the payment service only talks

to the checkout service, and the length of traces confirms

such communication where no other microservices are in the

trace. The details of each span are shown in Fig. 3. The trace

represents two spans of payment service, one represents a

51.5ms client-side span, and the other is a first-span child and

represents a 1.72ms server-side or outbound span of that tool.

The total time to complete the request is 52.28ms.

Istio captures traces for all requests sent and received at

each microservice which could be observed on the Jaegar

dashboard. The sampling rate of traces in case of high traffic

mesh is changed by modifying the PILOT TRACE SAMPLING
variable in istio-pilot deployment file using the command:

kubectl -n istio-system edit deploy istio-pilot. After injecting

10sec delay fault in the payment microservice, the application

is again accessed to create traces. The screenshot of the trace

in Fig. 4 shows the total spanning time of approximately 10sec.

The start time at checkout microservice is t = 0ms, but the

traffic reaches to payment service at t = 10ms. Time taken

at payment service for the inbound and outbound request is

3.54ms and 1.38ms only. For the demonstration purpose, we

have randomly picked the payment microservice and delay of

10ms. Nevertheless, the testing has been performed similarly

for each microservice with random values of delay.

Fig. 4. Jaeger dashboard showing the traces for payment microservice under 
10sec delay fault

Fig. 5. HTTP abort fault in shipping service

C. Fault Injection
Istio empowers protocol-specific fault injection into the

network link between services instead of traditional fault

injection methods such as killing pods or delaying or corrupting

TCP layer packets. It is based on the principle that the

breakdown observed by the application layer is the same as

it would experience when the physical network layer fails.

The fault injection is written in the YAML file using traffic

management configuration resources called VirtualService. The

YAML file defines guidelines that control how traffic requests

for service are routed within the Istio service mesh. The code 1

and 2 in Appendix show a sample of both types—HTTP dealy

and HTTP aboard, of fault definition.
Code 1 sets the 7sec delay for 50% traffic accessing the

microservice product catalog for all users. Code 2 defines abort

with HTTP Status 500 for 80% of traffic received from user

jason on shipping microservice while it works normally for

other users. These numeric values are randomly chosen to

demonstrate the fault injection. The screenshot of the shipping

error Http Abort is shown in Fig. 5. The second line in the

screenshot shows ’failed to receive a quote for delivery’.

D. Performance-testing
Locust is used to generate load and to test performance. The

microservice load generator, displayed in Fig 1, only interacts
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Fig. 6. Locust load testing statistics under normal case

Fig. 7. Locust load testing statistics under delay fault

Fig. 8. Locust load testing statistics under abort fault

with frontend services. Load testing of other microservices

is carried out via frontend service, as this is the application

entry point for all external requests. A locustfile.py sample is

displayed in Code. 3 available in Appendix. It accesses the

Hipster shop web page, explores the product # 6E92ZMYYFZ
and adds it to the cart. Then it creates 100 virtual users with

hatch rate (users spawned per second) of 10. The minimum

and maximum wait times are specified in milliseconds—per

simulated user—between the execution of tasks, and Locust
choose the time randomly and uniformly between min wait
and max wait.

The result of load testing for 2min is shown in Fig. 6.

The top left corner shows the overall request per second and

failure percentage. Next, a delay fault of 7sec is applied to

productcatalogue microservice for 50% of traffic. The result

of load testing again monitored for 2min, is shown in Fig. 7.

The number of failures for product microservice is 192 with

rps = 0.3. Comparing that with normal case as in Fig. 6,

the failure is only 44 with rps = 0.8. Next, the abort fault,

HTTP status 500, is applied to productcatalogue microservice

for 50% of traffic. The outcome is more serious than shown

in Fig. 8. The abortion fault severely affected the cart and

frontend network connections. The statistics also change when

the percentage of traffic is changed for a fault.

The detailed Locustfile for complete order generation process

Fig. 9. Locust load testing statistics for one pod in productcatalogue and cart 
microservice

Fig. 10. Locust load testing statistics for two pods in productcatalogue and 
cart

is given in [33]. This is run for complete end-to-end testing of

each microservice. The number of failures is viewed on Locust
GUI as shown in Fig. 6 to 10. Once the failure rate of any

step in order creation increases, then the cause is viewed on

the Jaeger and Graffana dashboard as mentioned in step IV-B

and Fig. 2 to 4. These tools automatically capture the cause

of the fault and display it on the dashboard.

V. RESILIENCE IMPLEMENTATION

The remedy of the faults that are generated in earlier sections

are explained below:

A. Scaling

Accessing the application by several users creates congestion

in the network. For each microservice, the extent of such

congestion is different. The traditional remedy for congestion

in the network is the scaling of the respective microservices.

To demonstrate this remedy, an experiment has been conducted

by scaling the number of a pod to analyze if there are any

changes in Locust statistics. It turned out that the scaling does

not affect the failure rate after delay and abort fault injection.

It is because the defects are injected into the microservice

network layer. An increase in the number of replicas does not

add value. Under healthy conditions (without fault injection),

the failures shown in the Locust GUI must be caused by the

network congestion for the specific microservice. The number

of pods associated with such microservice needs to be scaled

up. To show the performance comparison after scaling, an

experiment is executed with locustfile displayed in code 3, given

in Appendix, with 100virtual users, spawning rate = 10, and

Locust GUI monitored for 2min. Every microservice runs an

application with a single pod in the first case. The product

catalog and cart microservice are scaled in the next case. Fig. 9

and 10 show the results of the two cases. Figs. 10 shows that

the failure rate has decreased, and a large number of requests

are processed in a 2min interval.
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Checkout

Service Pod

Payment

Pod Service

Duplicate
Service

Duplicate
Service

Payment Checkout

Fig. 11. Architectural change in Hipster application to perform connection
fail-over for payment service. Only two microservices of the applicationhipster
are displayed. The green arrow shows newly created connections and services.

B. Service Connection Failover

The term failover is a procedure for automatically transfer-

ring control to a duplicate system when a microservice detects

a fault. As explained in the IV-A section, each microservice

consists of a pod and a service. Microservices communicate

via the URL connection where the URL contains the service

name and port number. Consider that traffic originates from

microservice A containing [service-A, pod-A] and directed to

other microservice B containing [service-B, pod-B]. If the

network link between A and B fails, then to remedy the link,

only the service duplication is required. The duplicate service

named duplicate-service-A and duplicate-service-B can still

use pod-A and pod-B, respectively. Nonetheless, the pod can

be duplicated as well. However, reusing the deployed pod

protects the Kubernetes cluster’s computational resources from

being wasted. It should be noted that the pod portion of the

microservice consumes the majority of the cluster resources in

terms of CPU, memory, and storage.

One of the example is shown in Fig. 11, where

A:checkoutservice and B:paymentservice. The service part

of both microservices is duplicated with different labels

once the fault in the network connection is detected, as

shown in Fig. 14 in Appendix. Payment service is duplicated

with kubectl create -f duplicate-paymentservice.yaml with a

new name as marked by a white arrow, and similarly, the

checkout service is duplicated. The new URL of the duplicated

service is updated in the pod deployment file of checkout

microservice as shown by the black arrow in Fig. 14. This

modified YAML definition only updates the connection URL of

payment service through command: kubectl apply -f modified-
checkoutservice.yaml without disturbing other configurations

of the deployment. Old service, as cross marked in Fig. 11, is

throttled temporarily until the issue with the old network link

sustains. After the fault is resolved, the throttled services are

turned on using the command: kubectl apply -f <old-YAML-
file-name> and remove the duplicated service through kubectl
delete -f duplicate-paymentservice.yaml.

C. Circuit Breaker

A cascade failure is possible if one or more microservices fail

due to high latency or any other issue in a multi-tier application.

In such a case, the failure of one microservice affects the

CheckoutServicePaymentService

Invoke Service

Response

Invoke Service

Response

CheckoutServicePaymentService

Invoke Service

Error

CheckoutServicePaymentService

Invoke Service

Timeout

Periodic Call

Error

Continue Open State

Invoke Service Periodic Call

Response

Return to closed state

Success

Closed State

Open State

Half-Open State

Frontend Circuit Breaker Backend

Fig. 12. Circuit breaker block diagram

performance of the next one in the tier, and eventually, it

reaches the frontend service, where the end-user experiences

application access blockage. Most of the time, retry logic is

used to correct a cascade failure with the premise that the fault

is transient, short-lived, and would resolve itself after repeated

tries with a short time gap. In a microservice failure, retry

logic might worsen the scenario even further and put the entire

application to a halt. It is because too many retries increase

traffic and pressure on the healthy microservice, making it

prone to request queue overflow and network congestion. The

circuit breaker helps to prevent such a malfunction across

multiple services, and it allows the development of a resilient

system that can survive when major services are not available.

We have used three types of the circuit breaker as shown in

Fig. 12:

1) Closed: The circuit breaker is in a closed state in a healthy

case and is transparent for all calls between services. If

the number of failures exceeds a defined limit, the breaker

tips and enters an open state.

2) Open: It sends an error message to all requests addressed

to the back-end service without executing the function

call.

3) Half-Open: After the specified timeout period, the circuit

switches to a half-open state to verify that the problem is

corrected. If the problem still exists, the breaker returns

once more to the open state; otherwise, it returns to the

closed state.

In the Hipster shop application, a circuit breaker s placed

between the checkout and payment microservice. As shown in

Fig. 12, the checkout microservice is at the back of the circuit

breaker. The breaker definition YAML is displayed in the code

snippent 4, available in Appendix. In the YAML definition,

the maxConnections variable threshold represents any excess

connection above this in the pending state in queue. Similarly,

the http1MaxPendingRequests variable is the maximum number

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 85 ----------------------------------------------------------------------------



Fig. 13. Traffic details in Graffana dashboard. Circuit break between checkout and payment microservice

of requests pending in the queue. Any excess requests pending

will be discarded. The number, as an example in the code

snippet 4 shows that more than 2 requests are discarded at

once for the payment service. Furthermore, the 2 consecutive

errors in less than 1sec cause the circuit breaker to trip into the

open state and eject the payment microservice pod from the

load balancer for 3min. To test this definition, the Locust fault

testing code given at [33] is run at 10 users per second. This

caused the network congestion error, and finally, the circuit

tripped to open state. The result is viewed in the Graffana

dashboard. Screenshot in Fig. 13 shows zero bytes received

and sent to/from payment microservice even if requests are

sent from the checkout service. We have only shown the use

of a circuit breaker for checkout and payment processes with

randomly selected users and a delay interval for demonstration

purposes. Nonetheless, the same technique is used to test

different microservices of Hipster shop application.

VI. CONCLUSION

In this paper, an automated testing and resiliency methodol-

ogy for the distributed architecture of the application is shown.

A service mesh Istio has been used to monitor traces between

microservices to develop automated testing and resilience.

Various types of fault injectors, including delay, traffic limiting,

and abort, are used between services. A Locust load testing

tool is used to create virtual users for load testing. The faulty

microservice link is located through several dashboards of Istio.

Three types of mechanisms are used for resilience or correction

of the fault, including scaling, failover, and circuit breaker. The

testing and resiliency setup can be effectively used for network

troubleshooting and performance measurement for any cloud

application during traffic congestion and fault.
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APPENDIX

A. Source code Snippets

Code Snippet 1. Delay fault.

---
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
name: productcatalogservice

spec:
hosts:
- productcatalogservice.default.cluster
http:
- fault:

delay:
fixedDelay: 7s
percent: 50

route:
- destination:

host: productcatalogservice
- route:
- destination:
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---
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
name: shippingservice

spec:
hosts:
- shippingservice.default.cluster
http:
- fault:

abort:
httpStatus: 500
percent: 80

match:
- headers:

end-user:
exact: jason

route:
- destination:

host: shippingservice
- route:
- destination:

host: shippingservice

Code Snippet 3. Locustfile.

from locust import HttpLocust
from locust import TaskSet,task
class UserBehavior(TaskSet):

@task(1)
def frontend(self):

self.client.get("/")
@task(2)
def productcatalogue(self):

self.client.get("/product
.../6E92ZMYYFZ")

@task(3)
def cart(self):

self.client.get("/cart")
class WebsiteUser(HttpLocust):

task_set = UserBehavior
min_wait = 3000
max_wait = 6000

Code Snippet 4. Circuit breakers.

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
name: paymentservice-circuit
namespace: default

spec:
host: paymentservice
trafficPolicy:
connectionPool:

tcp:
maxConnections: 1

http:
http1MaxPendingRequests: 1
maxRequestsPerConnection: 1

outlierDetection:
consecutiveErrors: 2
interval: 1s
baseEjectionTime: 3m
maxEjectionPercent: 100

B. Future Work - Causal Relationship Extraction

It becomes increasingly difficult to understand how infor-

mation flows across different services in applications with

many microservices. More information regarding the location

of possible checkpoints is needed. Also, in a commercial

Fig. 14. Connection fail-over for payment service. Change in YAML file is
marked by an arrow, and a payment backup service is created as shown in
the top right corner.

application, the cause of delay experienced by a user can

be either due to an artifact of the network or a microservice

in the call chain. It is needed to establish the caller and callee

relationship between microservices. Such types of knowledge

can be retrieved from causal relationship [34] between request-

response pairs across microservices. The concept of causal

analysis has been retrieved from Six-Sigma projects for root

cause analysis. The Pareto diagram is the most known tool to

analyze categorical information on root causes to identify the

major contributors. Also, many statistical tests such as the T-

test, F-test, analysis of variance (ANOVA), and chi-square test

have been used effectively for cause-effect relation. For cloud

applications, the cause-effect relationship is mostly built by the

system administrator from domain knowledge. The properties of

each service are extracted, and they are mapped using graphical

symbols to show the causal relationship. In the faulty condition,

the administrator’s intuition and his knowledge base determine

the root cause. This approach has a few disadvantages as below:

1) Over dependency on network administrator to locate the

fault.

2) Difficult to maintain the knowledge base for the behavior

of each microservice if they change continuously over

time.

3) A graphical model is relatively more complex to build

and difficult to interpret than a quantitative model, e.g.,

machine learning, regression, etc.

4) Creating a script for monitoring several signals could be

cumbersome.

A quantitative model using machine learning analytics is

Code Snippet 2. Abort fault.

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 87 ----------------------------------------------------------------------------



the superior option to develop a causal relationship among

microservices of a distributed application to remove such

issues. A call chain relationship across services could be

derived by analyzing a large set of messages or by transaction

tracing. Using statistical measures, the cause-effect relationship

between each possible combination of the microservices of

the application can be built. A python causality library at

https://pypi.org/project/causality/ could be a viable option to

try out. The first task would be to generate a set of relevant

metrics or features corresponding to microservice operation

from several dashboards of Istio and crawler [31] to run baseline

experimentation. We will cover this part in our follow-up

publications.
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