PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

Online Retailing and Shopping: An Academical
Simulation to Databases

Michal Kvet, Jozef Stasko, Yu-Lin Wang, Anténio
Lima
University of Zilina

Zilina, Slovakia
Michal . Kvet@(fri.uniza.sk

Abstract—The amount of data to be handled, modeled, and
stored is still rising. Information systems need to cover the
complexity by reaching performance. Thus, data retrieval must be
properly operated, delimited by several aspects, from the
hardware and data storage architecture to data modeling,
normalization, indexes, and partitioning techniques. Using one
shopping environment, continuous availability must be done to
limit financial losses. Moreover, it would cause significant
reliability issues. This paper is a result of the University of
Belgrade, Serbia, and the UNIZA — University of Zilina, Slovakia
cooperation. The overall management deals with relational data
modeling. The main emphasis is done on the processing efficiency
and overall performance reflected by the normalization, indexing,
partitioning and impact of the encryption. The main aim of this
paper is to propose robust techniques and discusssion for the data
model definition and management.

1. INTRODUCTION

The following article is created in the context of the course
of Advanced Database Management from the Faculty of
Management and Informatics, UNIZA — the University of
Zilina and Database II course on Information System Module
from the Faculty of Organizational Sciences, University of
Belgrade. The proposed paper is part of the semestral work
dealing with performance evaluation and strategy management.
The aim is to create a methodology of performance definition
and management in a complex online retailing system
environment.

We were proposed by our teachers to create and develop a
database about any theme we wanted. The group decided to pick
the online shopping topic, as this area seemed quite challenging
and increased their businesses with the current pandemic.
According to the analysis of order data, we can understand more
about our customers and find potential business.

As a way of developing our knowledge about the Database
topic, we used some of the theories that we learned during our
course and practiced during the realization of this project. We
were challenged to use some advanced database techniques that
contributed to the development of this article [4] [5] [6] [7].

After creating and designing the relational model for Online
retailing with different tables and attributes, we developed this
model in Oracle [1] [2] [3], where we created the classes and
then uploaded the data. This last process was done using
Procedures, a subroutine that allows the data insertion in a
simplified way [8] [9]. With this principle, they have defined 9
tables that will contain different attributes and registrations. The
tables created are Customer, Image, Invoice, OrderMain,

Teodora Gavrilovi¢

University of Belgrade
Belgrade, Serbia
tg20213005@student.fon.bg.ac.rs

OrderProduct, OrderStatus, PaymentType, Product, and
PromoCode. With this information, it’s possible to simulate a
full buying process and generate different registrations to the
database.

The following step was to generate our data. It was possible
with procedures created for all tables with automatic data
generation. The only table that didn’t have these random values
was the table Image, in which the information as web scrapped
from a supermarket Tesco Database. With the way we’re
generating data, a procedure was also developed where we
could update instantly our table OrderMain with the price of
each order. There was the consideration of transforming URL
data from VARCHAR to BLOB. For the table Customer, the
passwords were encrypted via the DBMS_CRYPTO package.

The model development and implementation also included
the task of developing Partitioning for this model was
considered because of the size of the database. Our table
OrderProduct contains a lot of big amounts of data, so this type
of division was necessary to make our database more threaded
and distributed. For our index's creation and processes, there
were 5 indexes called: ExpensiveOrder, two NumberOfOrder
(depending on the following tables: OrderMain and
OrderStatus, PromoCode, and PromoCodeExpiration.

Our number of indexes depends on the queries that we
developed for the simulation process of our database. These
queries will be part of our process for inspecting and
understanding how the behavior of the model is developed.
They consist of: Number of orders in the first quarters of years
where order status is paid; The customer with the most
expensive order (the biggest amount) grouped by payment type;
Top 10 most expensive products; Top 10 orders with the
smallest amount to be paid; The order with the most products
(overall products not product types); Customer with the most
promo codes that give more than 50% discount; Promo codes
grouped by % (<20, >20&<40, >40); All promo codes which
will be expired by February 2022; Percentage of orders where
order status is returned and Top 10 product with most orders

Based on the model review done, we also made some
changes to the queries so that we could understand new
database distributions. This process was important was critical
to understand that we were only working with databases where
there was a maximum of 10 products in an order.

With these queries, we could easily understand and compare
how a system of online shopping should work. This part is when
we enter the model review, where we try to test our database
and understand the results. The generated type of data also tried

ISSN 2305-7254

PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

to diversify and be more accurate. It was in this part that we
tested and understood the database, compared the difference
(after our partitioning was done). For example, we could
understand that our question number 10 could not improve that
much was subjected to the partitioning process.

The costs of the different questions helped us identify how
the information that we have could affect the normality of our
database. It is possible so to understand which of the queries
also has the lowest cost and requires less processing. For
example, questions 2 and 6 assume their role as the cheapest.
These process executions are easier when compared with our
other questions, also because of the amount of data he’s
iterating over to give the result.

There is a limitation where the database doesn’t reflect the
spent PromoCodes. The only performance that was totally
measured is related to the queries that were made, their
cardinality, and costs. Although, it was also considered the
chance of more statistical approaches to the database.

One of our last processes was reviewing what was done,
what we learned, and what possible aspects of improving on
developing this type of database, presenting all this reflection
on this academic paper.

II. MODEL DEVELOPMENT

A. Model design

Our first operational process was the creation and design of
our database model. In this part we started by deciding the
number of tables, what attributes they would contain, and the
relationship between them (by also reviewing similar databases
that would exist online).

Our number of tables consist of 9, being Customer, Image,
Invoice, OrderMain, OrderProduct, OrderStatus, PaymentType,
Product and PromoCode.

1. The table Customer is composed by the attributes:
id_customer (primary key - PK), email, first name,
last_name and pass.

The table Image is composed of the attributes:
id_image, created, content and other_data.

The table Invoice contains the attributes: id_invoice,
doc and id_order (foreign key - FK) to the table Order).
The table OrderMain is composed of the attributes:
id_order (PK), order_time, amount, id_os (FK to the
table OrderStatus, id payment (FK to the table
PaymentType and id _customer (FK to the table
Customer).

The table OrderProduct has the following attributes: id
(PK), id_product (FK to the table Product), id_order
(FK to table OrderMain), and quantity.

The table OrderStatus is composed of the attributes:
id_os (PK) and name.

The table PaymentType has the attributes: id_payment
(PK) and name.

The table Product contains the attributes: id_product
(PK), name, price, and id_image (FK to the table
Image).

154

9. The table PromoCode has the attributes: id (PK), name,

percentage, expiration, id_customer (FK to the table
Customer), and spent.

B. Model insertion and implementation

(1)Insert data

Related to the model insertion and implementation, after
creating the tables in Oracle SQL Server, the next step was data
insertion. For this step, we created multiple Procedures, a
subroutine that allows the data insertion in a simplified way.
Before we ran the procedures, we had an insertion query to
generate 100 products to the table Product with random prices.
For the Image table, we inserted the information via a .csv file
in that we used 100 URLs.

The first procedure is called insert_into_customer and is
related to the table Customer, and we generated 10000 users,
with sequential id, random email, first name, and last name, and
then the password. The password was encrypted by using a
library from Oracle named DBMS CRYPTO, and the function
hash. The package DBMS CRYPTO is the correct package to
generate hashes. It is not granted to the public by default. You
will have to grant it specifically (GRANT EXECUTE ON
SYS.DBMS CRYPTO TO userl). The result of this function is
of datatype RAW. You can store it in a RAW column or convert
it to VARCHAR2 wusing the RAWTOHEX or
UTL_ENCODE.BASE64 ENCODE functions.

The HASH function is overloaded to accept three datatypes
as input: RAW, CLOB and BLOB. Due to the rules of implicit
conversion, if you use a VARCHAR?2 as input, Oracle will try
to convert it to RAW and will most likely fail since this
conversion only works with hexadecimal strings. If you use
VARCHARR then, you need to convert the input to a binary
datatype or a CLOB.

The following procedure is named insert_into_promoCode
for the table PromoCode and generated 100000 promo codes
with sequential id, random customer, name, expiration date, and
percentage. This expiration date will explain if the promo code
is still available for being used or not. The next procedure is
named insert_invoice for the table Invoice and this will insert
crossed data from Customer and PaymentType in the doc
attribute.

The next procedure is called insert into_order to the table
OrderMain and will generate 10000 orders with sequential id
and different random attributes like, the order status, payment
type, the customer and the date. This procedure also inserts
information in the Invoice table. The following procedure is
insert_into_OrderProduct and will insert 100000 random
values from the table OrderMain to the table OrderProduct, by
generating random values to the order_id, product_id and the
own id.

The last procedure is to update OrderMain and has the
purpose of updating the amount for the table OrderMain, based
on the information from the OrderProduct table (information
from Product table).

PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

Fromo Code o
= id Integer MM (PK) @~ d_imags Integer WN(PK)
name Varchar2(s0) NN ot iy s
percentage Float NN content Varchar2(3a0) NN
expiration Date NN other data Varchar2(45} NN
4= id_customer Integer (FK)
spent Char(1)]
ki f
|
1 |
| |
J{ |
Customer |
6= id_cusiomer Integer NN (PK)
email Varchar2(s0) NN (AK1) 5 Ll
B - i e <0 e id_product Integer NN (PK)
R i name Varchar2(s0) NN
pass Varchar2(s0) N price Float NN
@ _id_image Integer (FK) (IX1)
D Relationship14 (1)
| |
| 3
OrderProduct
| la= i@ Integer NN (PK)
| l= id_product nteger NN (FK) (1)
. odee Worder Imtsger NN (FK) (2)
| | quantity _integer NN
| D_Relationship18 (0X1)
| X_Relationship18 (<2)
|
‘ 4
Grder
| &= i0_order Integer NN (PK)
— od ordertme Date NN
amount Float NN
o= id_os Integer (FK) (1)
= id_payment Integer () @2 PP— — 7
o= id_customer _Integer (FK)_(X3)
IX_Relationship4 (0X1) 4
X_Relationships (X2) [g AT]
Lo 5] lam id_payment Inieger W (PK)
' ? name Varchar2(50) NN ‘
[T
| |
! |
2

&= id_os Integer NN (PK)
name Varchar2(50) NN

Invoice
@= id_invoice Integer NN (PK)
doc Clob NN
4s id_order _Integer (FK) (1)
IX_Relationship16 (IX1)

Fig. 1. Relational Model

(2) Partitioning

The Partitioning Concept, as its name suggests, is based on
dividing data into smaller portions (partitions) to optimize the
database. It allows tables and indexes to be divided, enabling
these database objects to be managed and accessed at a finer
level of granularity. Oracle provides a rich variety of
partitioning strategies and extensions to address different
requirements.

Given that the database on which this paper is based is
characterized by tables of relatively low complexity and a large
number of records, Horizontal Partitioning stands out as a good
approach. This scenario involves creating subtables within a
defined range. The goal is to increase the efficiency of data
access.

The table of greatest interest is the OrderProduct which
contains 100,000 records. This amount of data makes it an
excellent candidate for partitioning. As the table has only the
quantity attribute, in addition to the keys, partitions are created
above this field. It is necessary to determine the type of criteria
for hierarchical partitioning. The Quantity attribute is an integer
value, in the range 1 to 10. Therefore, we conclude that it is
appropriate to apply the Range criterion. The number of
partitions was chosen to be three:

e Small (27957 records)
e Medium (44525 records)
e Big (27518 records)

155

The logical aspect of the model and data structures were
analyzed, in order to determine the boundary for each partition.
Since it is a question of the quantity of products purchased, it
was considered that more than 3 products go beyond the scope
of a small purchase. Similarly, over 7 copies of the same
product are a large number. Statistics of the generated data also
support this choice. It can be seen that the first and third
partitions have approximately the same number of records,
while the second contains about 60% more. By choosing the
boundaries differently, the partitions would not be logical
wholes and would be less uniform.

It is important to remember that in this case, we are talking
about generated data, which, although created as a simulation
of a real system, cannot truly mimic it. Therefore, when using
real data, it would be necessary to analyze the quantity
distribution and change the range if required.

Fig. 2 shows the execution plan before creating the
partitions. Partitioning efficiency is monitored based on
queries:

select *
from orderproduct
where quantity>5 OR quantity<3;

It can be seen that the cost is 105 units, the cardinality is
very high, and the execution time is 0.094 sec. Fig. 3 shows
the plan after partitions. Unfortunately, it can be seen that the
cost is much higher with partitions. On the other hand, the
cardinalities that indicate the number of joined rows are much
smaller, and the execution time itself is shorter. This shows that
this partitioning is not suitable for this type of query. A space in
which partitions would prove useful would be complex queries
that are limited to values from only one partition, i.e., directly
access it.

0e

384 9% 0 0- & &

Orack SOL Develoger adds_team3

- CRERE & b ream LIPATMENTTVFE =
+-ATHS PiY-N0 30 80a% omp @ adbs a3 -
1 Oracle 08
= Id adbs_team3 I'_Ea s L] -
- B8 EED 2 from sderpract
 ECUSTOMER 3 vhar qaetits O quntity<;
& Dmace

& EINVOCE

L1 ORDERVAIN

0 ORDERPRODUCT
£ ORDERSTATUS

PRGN ¢ Heenes > ameR 1 SREHE
AL @ 00uB
OPERATION
 SELECT STATEMENT
= B TARE ACCESS
& O Fiter Predicates

13 AARK

@ Data Modeler B%
¥ @OWPEE

@ TimesTen 8

@ @ SFANASER

¥ @ RRERANER
@ RETARS

ORECTNAME OFTIONS CARDINALTY COST
me3
me

105

0RDERPRODU.. FULL 105

5 Other XML
{info

GRS~ BE 2 04, RS-T I, 5TNG (RERH:

Fig. 2. Question 11 without Partitioning

PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

3283 9% 0 0- & &

Oracle SOL Developer : adbs_team3

" EIBORE & sobs eans loRDERPODNCT
+-ATHS PiEY-BA 30 0% ooy @ adbs team3 ©
3 Orace it
2 Qe s sz
- B a8 EED 1 e sckeyraet
£ CUSTOMER 3 vhare qantitp5 O quntity<d;
+ [wace
& W WvoICE
« L] ORDERMAIN
+ [ORDERPRODUCT
1 ORDERSTATUS
& L PAYMENTTYPE
£ pRODUCT
£ FROMOCODE
+ BRRR
samy
e 9
- Dames ¢ [eenes b unen) - WnEE
1 5ARE
ol - sl @ oossy
" @ 0UP R OPERATION (OBJECT_NAME OPTIONS PARTITION_START PARTITION_STOP PARTITIONID CARDINAUTY COST
* & TinesTen 58 S @ SELECT STATEMENT e s
+ & SFRBANE < & PARTITION RANGE R KEVOR) KEYIOR) 1 ams s
@ BRUTANER = BB TaBLE ACCESS OROERPRODU.. FULL KEYIOR) KEY(OR) 1 18454 81
<@ AETARE & OF FiterPrediates
Vo
QUANTTY>S

QUANTITY<3

S8R 5t (a2, wus—T 0, BN RuEs, .

Fig. 3. Question 11 with Partitioning

As can be seen below, accessing data through a partition is
much more efficient than directly applying the conditions in the
query. It was tested on queries:

select *
from OrderMain
join OrderProduct
partition (medium) using(id order);
select *
from OrderMain
join OrderProduct using(id order)
where OrderProduct.quantity >3
and OrderProduct.quantity <8 ;

OBJECT_NAME OPTIONS CARDINALITY CosT
94239 619
94239 619
RODUCT.ID_ORDER
ORDERMAIN FULL 10000 13
ITERATOR 94239 605
ORDERPRODUCT FULL 94239 605
Fig. 4. Question 12 without Partitioning
b sy + Wn i+
A oo
OHIECT_NAME OPTIONS. PARTITION_STOP ARTITION_START PARTITION_D CARDIALITY CosT

o3
o6

AL 1008

ey

L 2 2 4 o163

Fig. 5. Question 12 with Partitioning

The conclusion we came to through the partition testing process
is that the existence of many records is not a necessary measure
of the convenience of partitioning. It is essential to observe the
process from the business side as well. Next, analyze what
queries are actually used and the distribution of real data.

156

(3)Index

How to set Indexes in the database depends on queries
which will be detailed described in the next section (C. Model
Review). Here, we focus on how to decide the index and how is
the result.

About Question 1, we can find the query spent works on
finding first quarter from attribute ordertime in Table
OrderMain and find the payment type from attribute name in
Table PaymentType. Thus, create index in these two attributes
to shorten query time. Compare to Figure 6 and Fig. 7, can see
that the running time is 0.105 seconds less and the works query
cost from 17 reduced to 16.

CIMERE & adbs team3 L] ORDERPRODUCT
PEY-B2 32 @oaR 018
Ins snE:s

115 selact comt(s) as nusber0fOrder
2 fron CROERAIN oo
3 join ORDEASTATUS O on om.ORDER_STATUS_ID = 0.10_CRDERSTATUS

4 uhere substr(0.NANE, 1, 3) = ‘Pay’ and to_char(on.ORDER_TDHE, '0°) = 1;

i<l adbs_tean

P Enes - WRAHE
#s0. @ 013w

OPERATION OBJECT_NAME OPTIONS CARDINALITY
= ® SELECT STATEMENT 1
= 4 SORT AGGREGATE 1
& PAHASH JOIN

= O Access Predicates

OM.ORDER_STATUS D=0
= B TABLE ACCESS
= OW Filter Predicates

DERSTATUS
ERSTATUS

SUBSTRIO.NAME, 1,3)="Pay

= B TABLE ACCESS ORDERMAIN
= O Filter Predicates

TO_NUMBER(TO_CHARONTERNAL_FUNCTION(OM ORDER_TIME).'q')=1

2575

info type="has_user_tab
yes
info type="db_version
19.000
info type="parse_schema*
“ADES_TEAM3"
info type="dynamic_sampling" note="y

Fig. 6. Question 1

SRENE & aobs_ceam3 LIPAYMENTTYPE |
Pev-B2 33 2oa% ooy

e adbs team3 -

P ARG« Locant - > anen 1 - SREHE ¢
#s0 @ 007w
OPERATION ORECT_NAME OPTIONS CARDINALITY COST
@ SELECT STATEMENT 1 16
ACGREC 1
= DAHASH JON 502 16
& O Access Pred
88 TABLE ACCESS BY INDE 1 2
= o WNDEX RANGE S. 1 1
& O Access Predicate
= B8 TABLE ACCESS FulL 312 14
= OF Filter Predican
Other XL

Fig. 7. Question 1 Index

In Question 2, after creating the indexes for attribute email
in Table Customer and attribute name in Table Product, we
can see the processing time from 0.064 seconds (Fig. 8)
decrease to 0.036 seconds (Fig. 9). In addition, there is a
remarkable point that cost from 626 (Fig. 8) reduced to 3
(Fig. 9). It means that the indexes are really useful.

PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

adbs_team
PUY-NA 32 RPN oomp 1 adbs_team3 ~
IR amers
3] the custoser with The il expesaive rders (Ehe BIgest mount] grouped by payesnt type
29 salect il s
o~ selact onail, name, row number(] ever (partition by ID_PAYMENT order by resvlt desc) a5 resulthank, resslt froe |
3= Lot €. i0_custoner, Coomail, 0. I0_PAYNINT, .ANNE, wen(o.MEENT) 4. result
. Trom curtom
7 llu m O o8 €. 1d_customer = 0. 10_custoner
. P on PID_PAYENT = O, PAYMENT_TYPE_ID
3 ; arows by Coid curtamet, C.emeit, 5.0, PARENT, 5o
i)
12 whers resvithank = 1
v —
L L L Tonmnm
A B 0064w
OWECT_NAME oFTIONS CARDINAUITY cosT
& @ SELECT STATEMENT 10000 626
= W view 10000 626
= OF Filver Predicates
RESULTRANK =1
“ & WINDOW SORT PUSHED RANK 10000 626
® OF Filter Predicates.
ROW_NUMBER() OVER (PARTITION BY PID_PAYMENT ORDER BY SUM(O AMOUNT) DESC) <=1
“ @ HASH 10000 626
= DAHASH JOIN 10000 5
& O Access Predicates
P1D_PAYMENT O PAYMENT_TYPE_IO
8 TABLE ACCESS PAYMENTTYPE o 3 3
@ DAHASH JOIN 10000]
% On Access Predicates
CI0_CUSTOMER=0.1D_CUSTOMER
w 10000 2

Fig. 8. Question 2

Smmmm A Cosow
@ adbs_team3

PER-BA 32 BoaN o06p
Ina II!!I

1 The most expensive erders (the Sigest s Suced by papeent type
25 3alecs et asme from ¢
32 0TS email, name, row_mater() over (partition by I0_PAWENT order by reselt desc) as resslthank, resslt from (

salect c.id_custoner, C.email, p.I0_PAENT, p.WARE, swe(o.MOUNT) a5 reselt

from custoser ¢

oin SOEMUDY 9 on c. 4. cox 0.54_customer
© on P.I0_PAVENT = 0.PAMENT_TYPE_ID
.10, b

i by 14 ramtaner, C.eaatly

ESemumus
@

) wars rommtotak = 1)

53 o S upont vatoder Snkar v Cutmerfonnil)s
| 13 CoATE DX expumsivebrder_index o0

blﬂl'lum'lbl—ll'—tl'
A5 @ 00w
(opeRATION

'ORECT_NAME OPTIONS CARDINAUTY COST

= @ CREATE INDEX STATEMENT 82 3
= off INDEX BUILD EXPENSIVEOR . NON UNL..
= #50RT CREATE ... 82
o INDEX SYS_CO067S52 FAST FU..
S Other XML
s (info)

& info type="has_user_tab"
ves
& info ype="db_version”
19.000
info type="parse_schema’
“ADBS_TEAM3"
& infotype="plan_hash full"
2452150914
& typeaplan_hash”
1117207328

Fig. 9. Question 2 Index

The index about attribute percentage in Table promoCode
helps Question 6(Fig. 10, Fig. 11) and Question 7(Fig. 12,
Fig. 13). Especially in Question 6, this index largely improves
the processing time and the number of plans.

adbs_team3
|PEW-N2 33 2oa% ons

et pive more Than S dlscount

3
I

3 o Costomer ia_customer « PromeCose. customer_id
6 where .

- m_n-u-r

order By cownt(id_customer) desc;

b Emen 1 WRAHE -

o

b anes -
BEE)
OPERATION
@ SELECT STATEMENT 47892
= ORDER BY 47892
= @ HASH GROUP BY 47892
& B TABLE ACCESS PROMOCODE 47892
= OF Filter Predicates.
=AAno
PROMOCODE CUSTOMER_ID IS NOT NULL
PROMOCODE PERCENTAGE>0.5

OBJECT_NAME cosT

145
145
145
138

S Otherxmu
s (info)
S info type="has_user_tab"

ves
& info type="db_version”
19000
info type="parse_schema"
“ADES_TEAM3®

WA | N3 Unixs

| 58, ME. 38

Fig. 10. Question 6

adbs_team3
>V -BA 3Q BoAN o0e9p (@ adbs_team3
IOR BRESE
115 sslect 10 custoner, comtlid custoner)
from Custoner
joia PromaCode
4 Custoner. 1d_customer = PromoCode. custoer_id
whare percentage >

o O (peccantage);

eiaemu « b amen 1 - VHRHE -
0069 %

> amER -
#so. @

(OPERATION
% ® CREATE INDEX STATEMENT

OBJECT_NAME OPTIONS CARDINALITY COST
82 3

82

s finfo}
& infotype="has_user_tab”

yes
5 info type="db_version"
19.00.0
info type= um schema®
“ADES_TEAM:
S info type=", phn hash_full*
smnssz
fo type="plan_hash"
191596605

Fig. 11. Question 6 Index

OmeEm &woems Commmoocr
1@ adbs_team3 -~

PHW-N0 33 8o0% oonp
INE ammzE

prono codes grouped by % (<20, 306est, »28)
case

b ERES ¢ > ERes 1 SREHE
#sa. @ 00w
ciicoal e B S -
= ® SELECT STATEMENT ¥
& #SORT
8 TABLE ACCESS
& Other XML
= (info)
& info type="has_user_tab”

yes
& info type="db_version"
15000
& info type="dynamic_sampling” note="y"
2
5 info type="plan_hash_full"

1932521017
& info typea"plan_hash®

Fig. 12. Question 7

adbs_team3
PHB-N2 30 24N oconw

JS et wmicose vhen porcentags < 7 the 1 olen § ont) s LessThane,
wen(case vhen percestage >= 9.2 and PERCENTAGE < 9.4 then 1 #ise § and) a5 Betwendiinssd,
sun(case vhen percestage >= 0.4 then 1 else § end)
Pppt i

e
PERes < Lsemes - > ames) - SRENE
Ao @ 00899

OBECT_NAME OPTIONS CARDINAUTY COST
1 14

ACGREG...

PROMOCODE__FAST FU. 14

1
184286

& (info)
S info type="has_user_ab”
yes

5 info type="dynamic_sampling” rote="y"

2
& info type="plan_hash full
2059288109
S info type="plan_hash"

Fig. 13. Question 7 Index

Created an index about attribute expiration in Table
promoCode for Question 8. However, if compared to Figure
14, Fig. 15, and Fig. 16, we can find processing time may
decrease, but the cost becomes worse. Even we use parallel to
make multiple processes work simultaneously. It doesn’t really
help. Thus, this index is not useful for the efficiency of the

query.

157

PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

Emaum & adbs rcam3 | IORDERPRODUCT
PN -RA 30 RoaN ooz
InE awase

1 y
2 galecs # from promocode vhere expiration > to_date('31-01-2022', 00

3

e [minEm 1 0 WRBHE
Ao 8 0083 B

OPERATION
5 ® SELECT STATEMENT
= B TABLE ACCESS

OBJECT_NAME OPTIONS CARDINAUITY cost

2826
2826

138
138

PROMOCODE

Ful

Fig. 14. Question 8

EmaRm | & advs_eams |LICUSTOMER
PEHY-BA 3@ oo o026
IR awess

1 alac

1+ from prosocods where expiration » to_datel'31-91-2022', 00

d adbs_team3

2
3 CREATE Dioe

1on_ndex on

slmemnt > moee)« WRENE -
0.026 8

aw

> i -

A0 W

OPERATION

S ® SELECT STATEMENT
= [TABLE ACCESS

OBJECT_NAME OPTIONS CARDINAUTY COST

PROMOCODE FULL

Fig. 15. Question 8 Index

Emanm | & aovs cams [LICUSTOMER
PEv-NA B0 @oalN oosn
IN& anaszs

i

I adbs_team3

2 LULE
S0 W
OPERATION

BELL LS PR L
00699

OBJECT_NAME OPTIONS DISTRIBUTION OBJECT_NODE OTHER. ... CARDINALITY COST

5016 153

® SELECT STATEMENT
PX COORDINATOR
® PX SEND
® PX BLOCK
8 TABLE ACCESS
Filter Predicates

p->$
POWC
PCWP

5016
5016
5016

153
153
153

000 QC (RAN...QC (RANDOM)
ITERATOR
0E FULL

Q1000
Q1000
Q1000

Fig. 16. Question 8 Index Parallel

C. Model review

To analyze the database, we simulate 10 questions that may be
useful for business.

1) Number of orders in the first quarter of years that order
status is paid;

2) The customer with the most expensive order (the biggest
amount) is grouped by payment type;

Top 10 most expensive products;

Top 10 orders with the smallest amount to be paid

The order with the most products;

3)
4
3)

d adbs_team3

158

6) Customer with the most promo codes that give more than
50% discount;

Promo codes grouped by % (<20%, >20% & <40%,
>40%);

8) All promo codes will be expired by February 2022;

9) Percentage of orders where order status is returned;

10)Top 10 products with most orders.

7)

About Question 1, we can understand 622 orders in the first
quarter. If we also analyze other quarters, then we can find out
when customers are especially willing to spend money, then set
a development strategy for each quartal. For Question 2, saying
who cost the most and how much they paid in each payment
type. Additionally, we can find customers paid by PayPal cost
more than credit cards and cash, showing people prefer paying
directly from an account to others. Question 3 shows the
company is offering up to 489 euros product.

Question 4 can find the 10 smallest order amounts are from
164 euros to 999 euros. These are the target customers of the
company. Question 5 shows the order has 160 products. The
total amount is 264 euros. However, in this ranking, since
second orders all cost more than 5000 euros per order. It means
the order that has the most products can be an exception if a
company wants to set a strategy for these customers. Also, if we
combine Question 4 and Question 5, we can find that customers
in this selling system may have a high demand for products. In
Question 6, we can see that the customer has 25 promo codes.
However, he didn’t use any one of them. Question 7 divided
promo codes into three parts, 38,962 lower than 20%, 40,672
promo codes between 20% and 40% and 120,366 promo codes
over 40%.

Question 8 shows 5,622 promo codes will expire in
February. About 56% in all promo codes, and the percentage of
being used promo code is low. Showing customers have great
loyalty to the company. They keep ordering from here even
without using promo code. In Question 9, there is 25.9% of
orders be returned. That means it’s better that the company
checks the whole supply chain, finds the problems and tries to
lower the percentage of it. The last Question shows that top 10
popular products being ordered about 1000-1100 times and the
price of each product from 40 to 484 euros. This couldn’t reflect
the relation between customer preferences and product price,
but there is a possibility between product categories and
customer preferences.

III.CONCLUSION

This paper summarizes the process of creating and
optimizing a database from the initial idea and model. Observed
from the formal aspect, the paper deals with the creation of the
model and its realization in the database schema. The data used
in the project was generated by team members. The data also
contains password encryption as an important part of business
logic. The database was further optimized by using horizontal
partitioning and applying indexes.

The eventual continuation of work on the project would
include additional improvements to the database and creating a
user application to which this system applies.

PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

In addition to all the above, this work is a product of the
work of an international team within the Erasmus project. For
this reason, it is much more than a simulation of an actual
business process. During the project, we had the opportunity to
understand how to process the same teaching units at different
faculties. We managed to apply the theoretically acquired
knowledge. A project like this encourages independent
research, too. As our initial knowledge differed, we were able
to learn during the process, independently but also from each
other.

Above all, the work on the project has somewhat managed to
bring closer the real business environment that awaits us in the
future. Therefore, the conclusion of this project is that it has
brought progress in academic, professional, and human terms.

ACKNOWLEDGMENT

This publication was realized with the support of the project:
Accelerating the transition towards Edu 4.0 in HEISs,
TEACH4EDU4, funded under Erasmus+ programme - KA203
Strategic Partnerships for higher educatio.n.

TEACH([™|
AEDU4

159

REFERENCES

[1] Bryla, B.: Oracle Database 12¢ The Complete Reference, Oracle Press, 2013,
ISBN - 978-0071801751

[2] Burleson, D. K.: Oracle High-Performance SQL Tuning, Oracle Press, 2001,
ISBN - 9780072190588

[3] Delplanque, J., Etien, A., Anquetil, N., Auverlot, O.: Relational database
schema evolution: An industrial case study, IEEE International Conference
on Software Maintenance and Evolution, ICSME 2018, Spain, 2018, pp.
635-644

[4] Dudas A., Skrinarova J., Kiss A.: On graph coloring analysis through
visualization. In: Information and Digital Technologies 2021 : proceedings
of the international conference. pp. 71-78. ISBN 978-1-6654-3692-2.

[5] Eisa, L., Salem, R., Abdelkader, H.: A fragmentation algorithm for storage
management in cloud database environment, Proceedings of ICCES 2017
12th International Conference on Computer Engineering and Systems,
Egypt, 2018

[6] Kvet, M. (2019). Complexity and Scenario Robust Service System Design.
In Information and Digital Technologies 2019: conference proceedings,
Zilina, 2019, ISBN 978-1-7281-1400-2, pp. 271-274.

[7] Kvet, M.: Managing, locating and evaluating undefined values in relational
databases. 2020

[8] Steingartner, W., Eged, J., Radakovic, D., Novitzka, V.: Some innovations
of teaching the course on Data structures and algorithms. In 15th
International Scientific Conference on Informatics, 2019.

[9] Zhang, K., et al., 2019, Efficient public-key encryption with equality test in

the standard model, In Theoretical Computer Science, 755,
65-80.

