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Abstract—To maintain the information security of a computer
system, it is necessary to regularly audit the used system
components and their corresponding vulnerabilities. However,
accounting for software flaws is a time-consuming task due to the
constant emergence of new unstructured information about
discovered vulnerabilities. To increase the speed of analyzing
relevant information, the algorithm for processing vulnerability
descriptions and the XML-based output data presentation format
were proposed. Processing a text description means identifying a
name and version of vulnerable software, as well as determining
the type of a vulnerability and a level of severity. At the current
stage of the research, the achieved classification accuracy is 87%.

1. INTRODUCTION

Every year new unstructured information about software
vulnerabilities constantly appears in open sources. Considering
that during the last five years the growth of the number of
documented vulnerabilities is approximately 1000 per year
(coming up to 20142 new vulnerabilities in 2021 [1]), the
amount of undocumented information is significantly higher.
Furthermore, information about detected software vulnerability
initially has the form of ordinary text, which complicates the
automation of data processing. Consequently, vulnerability
management is an endless complex process.

To facilitate the work of security operators in understanding
whether the analyzed information contains a description of the
vulnerability and its type, different approaches may be applied:
Artificial Intelligence, Natural Language Processing methods,
and statistical analysis.

One of the solutions to determine a text related to cyber-
threats is filtering by dictionaries. The idea described in [2] is
to create from a text a list of terms and filter out common
words that are unlikely to be related to cyber-threats. If the
remaining words are present in the threat dictionary, then the
text can be considered relevant. Following dictionaries may be
considered as examples of non-related vulnerability words:
English dictionary (contains common English words), other
non-English dictionaries, stop-words dictionary (to, on, a, for,
the;). Threat dictionary should contain general terms indicating
known types of cyber-threats, for instance, DDoS, phishing,
data breach, botnet.

Another powerful criterion to indicate information about
security vulnerabilities is presence of a CVE (Common
Vulnerabilities and Exposures) identifier in a text. However,
this presence is a sufficient but not necessary condition. For

example, the study [3] of a comparison content related to
security vulnerabilities on three digital platforms: Reddit,
Twitter, GitHub, analyzing conversations that include at least
one CVE-ID, draw attention to the fact that some discussions
begin before public disclosure. CVE registration is a time-
consuming process and CVE will be publicly announced with a
list of vulnerable products and versions as well as related
exploits significantly later than the vulnerability detected.

To automate data processing and obtain more accurate
results, Artificial Intelligence methods are applied. The
following are examples of methods used:

e Among supervised machine learning methods: Naive
Bayes (NB), random forest (RF), support vector
machine (SVM) and logistic regression (LOG-REG),
the one copes best with text classification into relevant
and non-relevant is SVM [4].

e For data processing based on the words used in the
expression the best machine learning method is SVM
with TF-IDF [5]. The terms "remote code execution",
"actively exploited in the wild", "release a proof-of-
concept exploit" are always used to describe the same
serious situations.

e The conference paper [6] illustrates the comparison of
CNN and SVM as a hacker forum text classification
method for Cyber Threat Intelligence. Accuracy of both
results is high, but CNN requires more resources.

e Another group of researchers [7] also applied SVM
classifier with standard unigram bag of words vector
model to recognize text likely to contain security related
information. For the training process they used 75
positive and 80 negative examples. Vulnerability text
descriptions from NVD were used as the positive
examples, and the negative examples were technical text
descriptions from random websites. Preliminary
evaluations (using ten-fold cross validation) on this
small dataset showed that classifier was able to correctly
identify all vulnerability text descriptions without using
CVE-ID.

e To automatically classify exploits into pre-defined
categories on the-fly the authors of [8] employed a state-
of-the-art deep learning approach - Long Short-Term
Memory Recurrent Neural Network (LSTM RNN). Pre-
defined categories are system (RAT, keyloggers,
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crypters), network (botnets, DOS), webs (XSS),

database (SQL1) and mobile exploits.

To analyze exploit source code on hacker forums
researchers [9] developed a novel deep transfer learning
(DTL) framework. This framework transfers the learned
features from public exploit repositories to hacker
forums to improve exploit labeling.

The comparison of the most efficient vulnerability
description classification methods is presented in Table I.
According to the quality metrics the LSTM RNN algorithm
solves the classification task with the best performance.

In addition to vulnerability classification in attack types,
other reviewed research [10-11] aim to determine Common
Weakness Enumeration (CWE) type of vulnerability by
description analysis. CWE is a list of software and hardware
weakness types. Total current number of weaknesses is 918.
All weaknesses are split into different groups such as
cryptographic issues, data validation issues, user interface
security issues, authentication errors. According to researchers
from Japan University [11] assigning a CWE-ID to a
vulnerability requires a precise understanding of the definition
and structure of CWE-IDs. Therefore, automation would save
resources and help to minimize wrong assignments by
inexperienced employees.

The results of vulnerability description classification in
CWE types by different algorithms are shown in Table II. The
most efficient method is the combination of Boruta (the feature
selection algorithm [12]) and Random Forest algorithms
according to metrics from reviewed researches.

The next step of vulnerability management after the
processing (classification) of discovered information is the
presentation of the analysis results. Regarding studied
researches, a fairly small number of works are devoted to the
identification of wvulnerable software and a convenient
presentation of the analysis results.

In addition to the usual textual unstructured description of
security-related data, there are other formalized ways to present
information. Several standards were developed to share and use
information about a computer system and its vulnerabilities in a
more convenient way. During the research, the following
standards were studied: Open Vulnerability and Assessment
Language (OVAL), Software bill of materials (SBOM),
Common Platform Enumeration (CPE), package URL (PURL),
and CycloneDX. The use of one or a combination of the
software description standards should increase
the dissemination speed of the vulnerability classification
result.

Thus, the purpose of this research is to increase the speed
and quality of processing information about discovered
vulnerabilities by applying the most accurate classification
methods and providing complete analysis results in a machine-
readable format. Therefore, the task of the research is to
develop a new algorithm for processing unstructured
information about software vulnerabilities.
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TABLE I. QUALITY METRICS OF TEXT CLASSIFICATION METHODS [5], [8-9]

Classification Precision Recall F1/ Accuracy
method
LSTM RNN 0,970 0,980 0,980 (F1)
GRU RNN 0,960 0,960 0,960 (F1)
RNN 0,900 0,900 0,900 (F1)
SVM with TF-

IDF 0,960 0,970 0,960 (Ac)
. 0,874 (F1)
C-BiLSTM 0,876 0,872 0.874 (Ac)

TABLE II. ACCURACY OF CLASSIFICATION METHODS BY CWE TYPE [10-11]

Classification method Accuracy
ThreatZoom with Hierarchical Neural Network 0,930
Random Forest 0,969
Boruta and Random Forest 0,969
SVM with linear kernel 0,966
Boruta and SVM with linear kernel 0,968
Logistic Regression 0,968
Boruta and Logistic Regression 0,969
Decision Tree 0,951
Boruta and Decision Tree 0,951

II. ALGORITHM FOR PROCESSING OF AN UNSTRUCTURED
DESCRIPTION

The flowchart of the proposed algorithm for processing of
an unstructured information about software vulnerability is
presented in Fig. 1. The input data for the algorithm is a raw
unstructured text in English from a chosen source. The output
of the algorithm is the structured vulnerability description in
XML (eXtensible Markup Language) format, which defines
vulnerable software, vulnerability type, CVE-ID, related
adversarial techniques and severity level.

The algorithm consists of 10 steps:

1) Relevance check: The relevance check is performed to
avoid redundant analysis. The verification is done by counting
the occurrence of keywords in a text. Keywords are the chosen
security related terms [13] and additionally added special
words and abbreviations used to described exploits and
vulnerabilities such as: injection, POC (Proof of concept),
OOM (out of memory), trigger, issue. The threshold number
of keywords was estimated empirically. The text can be
considered relevant if there are 10 keywords for 62 words.
This step completes the processing of the text defined as
irrelevant.

2) Determining the name of vulnerable software: At the
current stage of the algorithm development, the name is
determined using a dictionary. In the future, it is planned to
apply Named-entity recognition methods.

e Searching for a name using regular expressions: If none
of the names from the dictionary is found, then the
name of the vulnerable software is searched using
regular expressions. Regular expressions look for
words that contain numbers or an uppercase letter after

the first letter in the word.
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3) Writing down name to XML: The determined name of
vulnerable software is recorded in the XML file.

4) Search for CVE-ID in text: The search is performed
using the regular expression “(cve|CVE)-\d{4}-\d{4,}".

Input data
. - raw text

Relevance check

Relevant text found

Determining the
name of vulnerable
software assiication by
types of
vulnerabilities

Name found dictionary name

Defining Mifre
ATT&CK Related
techniques

Nriting down name to ‘Searching for a name us:
XML

13

regular expressions®

Writing down
vulnerability type and
Search for CVE-ID echnigue fo XML

in text

Classification by
severity level**

CVE-ID ’ cve not found Text preprocessing
found and lemmatization
friting down CVE-ID

to XML

Fig. 1. Diagram of the algorithm

Nriting down severity
level to XML

Writing down CVE-ID to XML: If CVE-ID is found,
then it is recorded in the XML file.

5) Text preprocessing and lemmatization: Text preprocess-
ing consists of punctuation marks and stop-words removal,
and tokenization followed by lemmatization.

6) Classification by types of vulnerabilities: After the text
preprocessing, lemmas are classified. At this stage of the
development of the algorithm, Support Vector Machine
method with TF-IDF vectorization is used for classification by
vulnerability type, since this method showed better results
during experiments. For the proposed algorithm, the following
13 types were taken as classes of vulnerabilities according to
the CVE details classification: Denial of Service (DoS), Code
Execution, Overflow, Memory Corruption, SQL Injection,
Cross-Site Scripting (XSS), Directory Traversal, HTTP
Response Splitting, Bypass something, Gain Information, Gain
Privileges, Cross-site request forgery (CSRF), and File
Inclusion. These types are compatible with vulnerability
classes by flaw type GOST R 56546-2015 standard [14].

7) Defining MITRE ATT&CK related techniques: Attack
techniques are defined based on determined in previous step
vulnerability type according to MITRE lookup table [15]. For
example, Cross-site Scripting (XSS) vulnerability corresponds
to the following techniques: T1059.007 (Command and
Scripting Interpreter: JavaScript/JScript), T1557 (Man-in-the-
Browser), T1189 (Drive-by Compromise), T1204.001 (User
Execution: Malicious Link). Combining recently developed
MITRE table with the proposed algorithm of vulnerability
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description classification will provide more
representation of discovered cybersecurity flaws.

complete

8) Writing down vulnerability type and technique to XML:
The classified vulnerability type and corresponded attack
techniques are recorded in the XML file.

9) Classification by severity level: Severity is an example
of an additional vulnerability parameter that might be
determined by the algorithm. Knowledge of severity of
discovered vulnerability may help users to efficiently allocate
time and resources to ensure information security. The
algorithm classifies vulnerability in three groups of severity:
low, medium, and high. High is the combination of high and
critical groups that are used in Common Vulnerability Scoring
System (CVSS). The classification is done by Support Vector
Machine method. Other possible parameters for additional
classification are attack vector (local, network, adjacent
network), attack complexity (high, medium, low), and type of
possible negative impact (violations of confidentiality,
integrity, availability).

10) Writing down severity level to XML: The classified
severity level is recorded in the XML file.

The proposed algorithm was implemented using Python
programming language and following libraries: beautifulsoup,
requests, pandas, numpy, sklearn, keras.models, keras.layers,
nltk, and xml.etree.ElementTree.

III. EXPERIMENT RESULTS

Based on the analyzed studies, it was decided to use SVM
method or LSTM RNN for the classification tasks in steps 6 and
9 of the proposed algorithm.

To choose the classification method and test the proposed
algorithm two experiments were conducted. Data from NVD
(National Vulnerability Database) and CVE details database
were used for the supervised learning and algorithm evaluation
process. At the current stage of the algorithm development, the
quality metrics are precision, recall, accuracy, and F1-measure.

The first experiment was aimed at determining the accuracy
of classification in types of vulnerabilities. A total of 13 types of
vulnerabilities were used. For the neural network, it has not yet
been possible to collect enough training data (classification
accuracy is below 50%), nevertheless, it was possible to train
the classifier based on Support Vector Machine method and
obtain a classification accuracy of 87%. Table 1 illustrates the
classification results.

The second experiment was devoted to the classification of
vulnerability descriptions according to the level of severity.
Based on empirical tests, it was decided to allocate three classes,
combining the levels Critical and High in one. Both methods
(SVM and LSTM RNN) have been trained and tested on
vulnerabilities from the NVD over the past 4 years. It should be
noted that the increase in the amount of data improved the
classification accuracy of the method based on the neural
network from 59% to 63%. Moreover, the use of more data had
a positive effect on the correct classification of Log4Shell (one
of the most dangerous widespread vulnerabilities in the last
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couple of months) description as a high severity vulnerability.
SVM method classified descriptions in levels of severity with an
accuracy of 81%. The results of classification in severity levels
by SVM method and LSTM RNN are presented in Table IV and
Table V respectively.

TABLE III. RESULTS OF DESCRIPTION CLASSIFICATION IN TYPES OF
VULNERABILITY BY SVM METHOD

Vulnerability type Precision Recall F1-score
Bypass 0,900 0,900 0,900
CSRF 0,889 1,000 0,941

Directory Traversal 0,929 0.867 0,897

DoS 0,893 0,962 0,926

Code execution 0,826 0,679 0,745
File Inclusion 0,500 0,500 0,500
H“gp}fiffi‘;‘:“ 1,000 0,667 0,800
Gain information 0,900 0,857 0,878
Memory corruption 1,000 0,600 0,750
Overflow 0,889 0,889 0,889
Gain Privileges 0,889 0,941 0,914
SQL Injection 0,714 1,000 0,833
XSS 0,905 0,950 0,927

TABLE IV. RESULTS OF DESCRIPTION CLASSIFICATION IN LEVELS OF
SEVERITY BY SVM METHOD

Severity Precision | Recall Fl- Support
level score
High 0,831 0,855 0,843 3493
Medium 0,778 0,767 0,773 2583
Low 0,733 0,311 0,437 106

TABLE V. RESULTS OF DESCRIPTION CLASSIFICATION IN LEVELS OF SEVERITY

BY LSTM RNN
Input data Accuracy
Based on data
from 2020-2022 0,590
Based on data 0,626

from 2018-2022

Even though Support Vector Machine method is more
suitable for binary classification, it still showed better
classification results than the neural network-based method.
Because the latter requires more computing power and more
training data.

IV. FORMAT FOR PRESENTING INFORMATION ABOUT
SOFTWARE VULNERABILITIES

To develop an easy-to-use solution appropriate for sharing
results of text processing, the algorithm should provide
machine-readable output. Therefore, certain standards and
solutions were studied.
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One of the international machine-readable standards,
which helps to transfer the information and to assess and
report upon the machine state of computer systems, is Open
Vulnerability and Assessment Language (OVAL) [16]. OVAL
includes three schemas written in XML to describe a specific
machine state (vulnerability, configuration, patch state, etc.),
to represent system information, and to report the results of an
assessment: OVAL definitions schema, OVAL System
Characteristics schema, and OVAL Results schema. OVAL
Definition expressing a vulnerability includes the OVAL-ID,
status of the definition, the CVE Identifier or other reference
on which the definition is based, version of the Schema, a brief
description of the security issue covered in the definition, the
main author, a list of the significant contributors to the
development of the definition, the specific OS, the name of the
file with the vulnerability in it, application version, and patch
status. Using this information, it is easier to find out if a
system is vulnerable.

Some of possible OVAL use cases are Vulnerability
Assessment, Malware and Threat Indicator Sharing, Patch
Management, and Auditing and Centralized Audit Validation.
ScanOVAL [17] is an example of a software that
automatically detects vulnerabilities of a software installed on
a local PC based on processing data presented in XML files.

Other examples of vulnerability description standards are
The Common Vulnerability Reporting Framework (CVRF)
standard, which is also an XML-based language, and State
Standards such as GOST 56545-2015 [18]. The disadvantage
of these formats compared to OVAL is either that they contain
less information or that they do not increase the speed of
information exchange.

Another useful format for presenting information about a
computer system is Software Bill of-materials (SBOM) [19].
SBOM is a list of all software packages (with version
numbers) that are incorporated into the build of a software
product. There are multiple SBOM standards including
CycloneDX, SPDX, and SWID. CycloneDX [20] focuses on
software security use cases, for example, vulnerability analysis
(software and hardware). It is designed with machine-readable
formats XML and JSON to be extensible, and easily
adoptable. CycloneDX presents information as components
with sub-components. Components are names and versions of
open-source applications, libraries, frameworks, an operating
system, or file. After the generation of BOMs, the components
can be tracked and automatically analyzed during the software
lifecycle via specifically designed applications such as
Dependency-Track [21].

Dependency-Track analyzes and continuously monitors
components from SBOMSs for security, operational, and
license risk. To identify known vulnerabilities the following
sources are used: NVD, Node Package Manager Public
Advisories, Sonatype OSS Index, VulnDB from Risk Based
Security.

Dependency-Track is not the only application that provides
information about possible vulnerabilities depends on certain
SBOM. Efros Vulnerability Checker [22] based on the
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category type (software, OS, virtualization system, network
equipment), manufacturer name, product name and version
number, displays a list of vulnerabilities sorted by criticality.
Each retrieved description of a vulnerability includes ID
(CVE-ID or OVAL-ID), a description, hazard level, date of
detection and link(s) to known vulnerability database(s) with
more detailed information: NVD, bdu.fstec, and Security
Advisories from various developers.

The essential advantage of the implementation of
developed machine-readable standards is the ability to share
information in a single format, increasing the speed of
information exchange and digestion. However, the reviewed
systems cannot be called absolute solutions to provide all
relevant information about possible vulnerabilities. These
applications fully depend on advanced prepared and processed
information, which appears after certain delay needed for the
analysis.

Thereby, based on studied solutions, it was proposed to
prepare a format similar to CycloneDX, including a
description of the vulnerability, in order to provide convenient
results of vulnerability description processing. The format is
an XML-based and contains:

e Date of creation.

e Source reference.

Name and version of vulnerable software.
Vulnerability description.

CVE-ID, if available.

Vulnerability type.

Additional parameters. For example, severity level,
attack vector, attack complexity, attack technique.
The example of the filled-in XML description of
LiquidFiles vulnerability is presented below.
<?xml version="1.0" encoding="UTF-8"?>
<new format xmlns="...">
<generator>
<schema_version>0.3</schema_version>
<timestamp>2020-04-8 11:00</timestamp>
</generator>
<source>
Allows code

<title>Shares Weakness

injection</title>

feature

<reference
ref url="https://threatpostxxx.com/new vulnerability
ll/>

</source>
<components>
<component>
<name>LiquidFiles</name>
<versions>

<version>before 3.3.19 </version>
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</versions>

<vulnerable_ component>Shares feature of

LiquidFiles</vulnerable component>
<vulnerability>

<type>XSS (vulnerability type according to
ML classifier)</type>

<techniques>T1059.007</techniques>
<severity>High</severity>
<cve>CVE-2020-29071</cve>

<description notes>The issue arises from the
insecure rendering of HTML files uploaded to the
platform as attachments, when the htmlview URL 1is
directly accessed. The impact ranges from executing
commands as root on the server to retrieving
sensitive information about encrypted e-mails,
depending on the permissions of the target
user.</description notes>

</vulnerability>

</component>

</components>

</new_format>

V. CONCLUSION

Early awareness of discovered software vulnerabilities is
essential for protection. Considering that the information about
newly discovered security flaws constantly appears in a noisy
environment, the research was devoted to creating a solution
that helps ensure well-timed defense.

The proposed method for increasing the speed of
processing unstructured information is to automatically
determine the name of the vulnerable software and the
parameters of the new vulnerability, as well as the subsequent
presentation of the data in a machine-readable form. Based on
the studied research, it is proposed to apply one of the
following classification methods to determine the type of
vulnerability: Support Vector Machine, Long Short-Term
Memory Recurrent Neural Network, and Random Forest, since
their accuracy parameters surpassed others.

From the entire flow of information, the developed
algorithm determines the relevant information. Then the name
of the wvulnerable software is automatically detected and,
together with such vulnerability parameters as type, severity,
attack technique and CVE-ID, is written to the developed
XML-based format.

At this stage of the study, the use of two (SVM, LSTM
RNN) of the three most effective classification methods has
been tested. Obtained classification accuracy in vulnerability
types and severity levels is 0,87 and 0,81 respectively.

The developed algorithm for processing unstructured data
of software vulnerabilities can be used as an integral part of
the security analysis system to reduce the company's potential
costs.

The future research will be aimed at improving the
classification accuracy of the developed algorithm, choosing




PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

an appropriate method for determining the name of vulnerable
software, and will be focused on conducting additional tests.
In particular, it is planned to perform additional optimization
of LSTM RNN parameters and conduct testing of vulnerability
description classification by Random Forest machine learning
algorithm. When choosing a method for determining the name
of vulnerable software, Named Entity Extraction methods will
be analyzed and compared with the dictionary search
approach. In order to verify the applicability of the selected
text relevance assessment method, tests will be carried out on
a larger dataset. Also, to increase the functionality of the
proposed algorithm, it is planned to test textual description
classification in additional vulnerability parameters, for
instance, in levels of attack complexity.
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