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Abstract—The modern trend of moving artificial intelligence
computation near to the origin of data sources has increased
the demand for new hardware and software suitable for such
environments. We carried out a scoping study to find the current
resources used when developing Edge AI applications. Due to the
nature of the topic, the research combined scientific sources with
product information and software project sources. The paper
is structured as follows. In the first part, Edge AI applications
are briefly discussed followed by hardware options and finally,
the software used to develop AI models is described. There are
various hardware products available, and we found as many as
possible for this research to identify the best-known manufactur-
ers. We describe the devices in the following categories: artificial
intelligence accelerators and processors, field-programmable gate
arrays, system-on-a-chip devices, system-on-modules, and full
computers from development boards to servers. There seem to be
three trends in Edge AI software development: neural network
optimization, mobile device software and microcontroller soft-
ware. We discussed these emerging fields and how the special
challenges of low power consumption and machine learning
computation are being taken into account. Our findings suggest
that the Edge AI ecosystem is currently developing, and it has its
own challenges to which vendors and developers are responding.

I. INTRODUCTION

In the last ten years, Artificial Intelligence (AI) solutions

have become common in several application areas. In par-

ticular, Machine Learning (ML) based solutions are applied

to solving a wide range of real-life problems. This variety

extends from analysing diseases based on healthcare imaging

to predicting energy consumption or detecting anomalous

intrusions in network traffic. These AI-based solutions com-

monly require a large amount of computational capability,

which is usually achieved using cloud-based solutions relying

on High Performance Computing (HPC) clusters.

However, the rapidly increasing number of Internet of

Things (IoT) applications has also raised the number of

devices and applications that are producing, collecting and

analysing data on the edge of the network. This has naturally

increased the interest in applying AI computation on the edge.

This concept of using AI near the devices that are producing

data is called Edge AI. One of the earliest publications about

Edge AI [1] notices two requirements promoting the use of

Edge AI: (i) connection robustness and its latency and (ii)

privacy issues when uploading data to cloud-based servers.

Lee et al. present following examples of those issues: the

AI calculation of self-driving cars must be immediate and

cannot be in the cloud behind the network latencies or bad

network connection, similarly uploading of the video recording

with personal data to the cloud based servers raises privacy

considerations [1]. The concept of fog computing, i.e., placing

computation nodes below the cloud, between edge and the

cloud [2], covers similar technologies in the same problem

space.

However, even if the concept of Edge AI seems to be

coherent, there are some known issues with it. As stated by

Shi et al. [3], deploying complete AI models (such as deep

neural networks) to the Edge device is generally impracticable

because of the hardware boundaries; the size of the model

is too large or the computational requirements are too high.

A potential implementation is to accomplish collaboration

between different Edge AI devices and solutions [3]. Bharwaj

et al. [4] identify three challenges for Edge AI:

1) Computation-aware learning on IoT. Most of the IoT

devices are power and/or memory constrained and in that

sense the computation-aware compression of AI models

is required.

2) Data-independent model compression for learning from
small data. The original private data sets of big-data

models cannot be used for model compression.

3) Communication-aware deployment of deep learning
models on multiple IoT devices. Distributing compu-

tation with IoT devices could be difficult because of

limited communication resources.

As can be seen, IoT-based Edge AI devices produce distinct

data. The analysed information must be exchanged between

collaborating Edge AI devices in order to achieve sufficient

overall capability. Lin et al. [5] introduce blockchain-based

architecture for a knowledge market for trading the knowledge

of Edge AI devices. Security and privacy issues of Edge AI

should be considered thoroughly, as with any data processing

systems. Sachdev presented security and privacy issues of

Edge AI in digital marketing and concluded that one of

the main challenges is how Edge AI can extensively be

implemented in that context [6]. Kumar et al. proved by

using the classical k-means algorithm in Edge AI concept the

feasibility of maintaining privacy preservation of data with

Edge AI processing [7].

There have been earlier reviews about Edge AI focusing on

different aspects of the emerging field. Wang et al. [8] present
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a survey of technologies related to Edge AI emphasising

edge intelligence and intelligent edge. Edge intelligence is the

concept of deploying machine learning models to the devices

using those models on the edge. This is done in order to lower

latency and make the applications more reliable. The concept

of intelligent edge focuses on maintenance and management of

edge devices. The intelligence via machine learning is used to

adaptively control the shared edge resources. The survey also

introduces various applicable scenarios for both technologies.

Similar classification of the types of Edge AI is introduced by

Deng et al. [9], but instead of using the terms edge intelligence
and intelligent edge they are using the terms AI on Edge and

AI for Edge. In addition of making the distinction between the

classes, the paper also reviews the state of the art and grand

challenges in both categories. Reuther et al. [10] have surveyed

machine learning accelerators. They present and categorise

close to hundred chips and systems covering everything from

low power solutions to data center systems. Li and Liewig

have done a similar review [11]. The paper also lists some

future trends that AI accelerators might implement in the

future. Crespo [12] has collected a list of hardware, software

and other resources that are related to Edge AI to a GitHub

project where community members can contribute to share

knowledge of the topic. Merenda et al. [13] have carried out a

literature review on the topic of running Edge AI on resource

constrained devices. They review different algorithms, hard-

ware, infrastructure architectures, wireless standards, privacy

issues and solutions, and edge training solutions that can be

used with these devices. Furthermore, the authors performed

a test deployment of a convolutional neural network model to

a real world microcontroller system. Ray [14] has carried out

an extensive review of machine learning state-of-the-art and

prospects on embedded devices (TinyML).

This scoping study aims to create an overview of the Edge

AI ecosystem and provide answers to the following questions:

1) What application areas can be identified for Edge AI?

2) What Edge AI hardware platforms exist?

3) What Edge AI software packages exist?

The first question is meant to be a cursory glance at the

possibilities and latest trends in applications. The hardware

and software sections provide a fresh look at the tools available

for Edge AI development.

II. METHODOLOGY

This research is structured as a scoping study that describes

and summarises an emerging field [15]. We use the stages of

scoping study described by Arksey and O’Malley [16]:

1) Identify the question,

2) Identify relevant studies and product descriptions,

3) Select relevant studies and product descriptions,

4) Chart the data,

5) Collate, summarize, report the results.

Since the topic we are interested in heavily depends on

hardware products and software packages, we have changed

the process to include vendor marketing material in addition to

studies. As queries about the three research questions revealed

information about use cases, hardware and software, the found

articles and resources were included in the three categories

accordingly. For Edge AI applications, we queried Google

Scholar and IEEE Xplore with the search phrases ”Edge AI”

and ”Edge AI application”. Our search resulted in several

articles about hardware platforms and those were included in

the hardware platforms chapter. The goal here was to gain

a general overview about different applications, so the most

relevant and diverse ones were chosen.

AI hardware platforms were searched in Google with the

phrase ”edge AI hardware platform”. The first 50 results were

evaluated. We excluded offerings that focused on providing

services or projects centered around data. This method is

useful because this is the way most users would search for

products. However, we must be aware that search engine op-

timization for marketing purposes and Google’s own ranking

can skew the results. New devices and manufacturers were

discovered when going through the found product descriptions

and results from the software and applications searches. Those

were also included in the study where needed. Especially

Crespo’s list was found useful [12].

For the Edge AI software section we settled on three distinct

categories that clearly can be placed under the Edge AI

software term. These categories are neural network model
optimization, Edge AI on mobile devices and Edge AI on
embedded devices. For the neural network optimization cate-

gory, we studied recent review publications about the different

optimization methods and then reviewed the two most popular

neural network frameworks, TensorFlow and PyTorch for sup-

port to these methods. For Edge AI on mobile devices section,

we reviewed the two most popular mobile device operating

systems, Android and iOS, for machine learning support. The

final category, Edge AI on embedded devices, turned out to

be problematic. Finding the software products that belong to

this category was a challenging task. There does not seem to

be a single search term that reliably finds these projects. The

problem might be that the terminology and workflows have

not yet properly settled for the Edge AI field of study. We

tried to use search terms such as TinyML software, IoT AI
software, embedded devices AI software and microcontrollers
AI software, but the results were saturated by blogspam like

content. Finally, the best sources for actual software projects

that belong to this category were community collected lists

on open forums [12], [17]. After finding projects that way,

some additional projects were discovered by searching survey

and benchmarking publications and blog posts with those

project names. Often the projects were compared to some other

projects that were not listed yet. After the projects were found,

their features were evaluated using their publicly available

documentation and compared with each other.

III. EDGE AI APPLICATIONS

As with traditional AI solutions, there exists a wide range

of applications in the Edge AI world. Because the Edge AI

concept is relatively new, the published research papers started
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appearing in 2018 and most of them after 2019. The research

of published studies on Edge AI applications identifies five

main categories of applications: Security, Mobile networks,

Healthcare, Voice and Image Analysis and Frameworks.

AntiConcealer is an Edge AI approach for detecting ad-

versary concealed behaviors in the IoT [18]. For the security

solutions, Edge AI is also used for anomaly detection in the

advanced metering infrastructures [19], while Nawaz et al. in-

troduce Ethereum blockchain based solution for analysing the

data and tracking the parties accessing that analysis data [20].

Examples of Edge AI solutions for mobile communication

and networking are the paper about learning method to support

mobile target tracking in the edge platform [21] and another

one introducing a resource allocation scheme for 6G [22].

In the healthcare domain Edge AI is for example applied for

detecting diabetic retinopathy [23]. Queralta et al. proposed

an architecture for health monitoring [24]. Edge AI is used

for predicting diseases such as respiratory diseases [25] and

chronic obstructive pulmonary disease [26].

As in the traditional AI applications, Edge AI applications

are heavily used for voice and image detection and analysis.

Shen et al. [27] introduce Edge AI based human head detection

algorithm, and Gamanayake et al. propose an Edge AI based

method for image pruning [28]. Edge AI based solution is

implemented for acoustic classification to be deployed in the

autonomous cars [29]. Miyata et al. [30] illustrate Edge AI

based mobile robot including voice and object recognition.

Application for tangible real-world problem solving is the An

Edge AI based apple detection solution has been created to

count apples and estimate their sizes [31].

There are also different frameworks published for Edge AI

solutions, for example NeuroPilot, a cross-platform framework

for Edge AI [32] and an Edge AI framework for telemetry

collection and utilization, evaluating both graphics card (GPU)

and field-programmable gate array (FPGA) platforms. [33]

IV. EDGE AI HARDWARE PLATFORMS

The concept of Edge AI is tied to the idea of placing com-

puting power physically near the data source. Any desktop or

server rack computer could serve as an edge device. However,

many environments are not optimal for such devices. Their size

and power consumption are also a major concern. For these

reasons, specific Edge AI devices have been designed. Their

size and wireless connectivity make them easily attachable to

industrial environments. Limited power consumption is also

essential when many devices are deployed at once. Moreover,

the need for specific mathematical capabilities has given rise

to the AI accelerator modules.

Developments in the Edge AI ecosystem drive the devices to

be more efficient. Benchmarking hardware platforms has also

interested researchers from computing and power consumption

points of view. Baller et al. measured five edge devices and

give their recommendations for best performance in continu-

ous and sporadic scenarios [34]. Operating AI inference in

industrial conditions could be made more robust by using

magnetoresistive random access memory (MRAM) [35], [36]

Energy efficiency is a constant concern with Edge AI, and

there are developments in this area, such as Levisse et al. with

their functionality enhanced memories [37]. Liu et al. propose

hybrid parallelism, which makes hierarchical training of AI

models for Edge AI situations efficient [38].

A. AI acceleration units

Special-purpose acceleration units can either be used as

additional processors in any electronic device or as machine

learning co-processors in devices that are designed to include

such capabilities in addition to traditional processing power

and connectivity. AI acceleration units are fast at executing

vector and tensor computation and have optimal pipelines for

machine learning operations, usually neural network methods.

Unfortunately, it is difficult to find meaningful details about

many of these devices. Intel Neural Compute Engine is an

accelerator for deep neural networks. It supports native FP

16 floating point and 8-bit fixed point data types and can

be used to deploy neural networks in Caffe and TensorFlow

formats [39]. MediaTek’s AI Processing Unit (APU) is an AI

accelerator with multimedia features. APU lists TensorFlow,

TensorFlow Lite, Caffe and others as supported neural network

formats. APU can perform 8-bit and 16-bit integer and 16-

bit floating point calculations. It supports Android Neural

Networks API (NNAPI) and a custom API [40], [41]. Google

Edge TPU is an application specific integrated circuit (ASIC)

designed to run TensorFlow Lite models. [42]. The NVIDIA

Deep Learning Accelerator (NVDLA) is built specifically for

neural network operations. Its processors map to the corre-

sponding mathematical operations used during deep learning.

It supports a wide range of data types [43]. The Gyrfalcon

Matrix Processing Unit (MPE) is built to compute matrix

operations related to neural networks [44]. Mythic has created

an analog matrix processor called M1076 Mythic AMP, which

uses the Mythic Analog Compute Engine (ACE). Supported

data formats are 4-bit, 8-bit and 16-bit integers, and PyTorch,

Caffe and TensorFlow models can be used [45]. Syntiant has

created a product line of Neural Decision Processors in order

to create faster possibilities for neural network solutions, in-

cluding speech recognition [46], [47], sensor applications [48],

[49] and vision [50]. Hailo offers an AI processor that supports

8- and 16-bit numeric presentations and TensorFlow and

ONNX for software [51].

B. Field-programmable gate arrays

One trend in Edge AI devices is to employ a field-

programmable gate array (FPGA) to build a processor suitable

for the specific task of using machine learning methods.

Because FPGAs allow great flexibility in what the processor

does, they are very useful in building AI accelerators. Intel has

produced FPGAs whose applications cover Edge AI: MAX V

CPLD [52], Cyclone 10 LP FPGA [53] and Cyclone 10 GX

FPGA [54]. For example, a CPU intended for IoT and Edge AI

has been developed using the MAX 10 FPGA [55]. There have

also been, e.g., frameworks using a FPGA for accelerating

machine learning in edge environments [56]
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C. System-on-a-chip and system-on-module devices

Intel’s Movidius Myriad X Vision Processing Unit is a video

processor with neural network inference capabilities. It has 16

cores and a dedicated on-chip Neural Compute Engine and can

be used with up to 8 high-definition cameras [39]. Intel has

also produced a USB device based on the Movidius Myriad X

unit [57] and vision accelerators for edge applications [58].

Systems such as UP Squared 6000 use Movidius Myriad X as

an optional visual processing unit [59], Luxonis DepthAI [60]

and Luxonis megaAI [61]. HiSilicon’s Kirin 970 is a processor

for AI computing. It has a dedicated NPU for AI and features

aimed at solving computer vision and audio tasks. It also has

connectivity in the cellular network using an LTE modem [62].

Qualcomm’s Snapdragon 855+/860 is aimed at photography

and gaming. However, the on-device AI engine can perform

vector and tensor acceleration. It has an LTE modem for

cellular connectivity along with Wi-Fi, Bluetooth and near

field communication (NFC) [63], MediaTek’s Helio P90 is

also geared towards imaging, photography, and gaming and

features cellular connectivity (LTE), Wi-Fi and Bluetooth. The

AI system is marketed for image processing [64]. MediaTek

also has AIoT Chipset Platforms specifically for IoT and Edge

AI casesincluding displays [65], voice recognition [66], audio

and video processing [67] and AI vision [68], although only

the last two have a dedicated AI processor. Other devices

using the APU units include Helio P95 [69], the Dimensity

1000 series [70] and Dimensity 9000 [71]. MediaTek has also

released a short paper about their Edge AI solutions [72].

Nowadays, Rock Chip offers two processor models for Edge

AI. These processors are aimed at image and voice processing,

especially for mobile devices [73], [74] Kendryte K210 is a

chip designed for face recognition. It uses the TinyYOLO

object detection neural network [75]. JeVois-A33 [76] is an

open-source camera with computer vision AI capabilities.

JeVois-Pro [77] has in internal neural processing unit but can

also be updated with Coral and Movidius Myriad X units.

D. Coral

Google’s Coral Accelerator Module [42] is a solderable

module that contains the tensor processing unit Edge TPU. It

is also offered using various connectors: Coral USB Acceler-

ator [78], Coral M.2 Accelerator [79], Coral M.2 Accelerator

with Dual Edge TPU [80] and Coral Mini PCIe Accelera-

tor [81]. The Coral Dev Board Mini [82] can be used to

develop and test applications to be used with the accelerator

itself. Coral System-on-Module [83] is an integrated system

that includes the Edge TPU accelerator. The module is meant

for deployment into production environments. It has a devel-

opment board counterpart called Coral Dev Board [84]. There

are also camera [85] and sensor add-ons available [86].

E. Jetson

NVIDIA has produced devices for edge computing using

graphical processing units, which can be used for the vector

calculations needed in machine learning. These Jetson models

with additional connectivity include Jetson Nano [87], Jetson

TX2 NX [88], Jetson TX2 4GB [89], Jetson TX2 [90] and

Jetson TX2i [91]. As discussed earlier, NVIDIA’s NVDLA is

a deep learning accelerator. The use of a separate process-

ing unit for neural network calculations releases the GPU

for multimedia tasks. There are various Jetson models that

use this technology: Jetson Xavier NX 16GB [92], Jetson

Xavier NX [93], Jetson AGX Xavier 64GB [94], Jetson AGX

Xavier [95], Jetson AGX Xavier Industrial [96], Jetson Orin

NX [97] and Jetson AGX Orin [98]. Both the GPU-based

and NVDLA-based devices have developer kits available:

Jetson Nano Developer Kit [99], Jetson Nano 2GB Developer

Kit [100], Jetson Nano Xavier NX Developer Kit [101],

Jetson AGX Xavier Developer Kit [102] and Jetson AGX Orin

Developer Kit [103]. These kits can be used for prototyping

and testing before moving on to the production versions.

F. Gyrfalcon MPE

Gyrfalcon produces its MPE-based devices for Edge AI.

Their products cover a wide area of hardware from MPE

processors to servers that use that technology. Lightspeeur

2801S Neural Accelerator can be deployed as a USB dongle

or as an embedded device. It supports TensorFlow, Caffe

and PyTorch [44]. Lightspeeur 5801S Neural Accelerator is

the more efficient (operations/Watt) model for consumer edge

devices [104]. Lightspeeur 2803S Neural Accelerator provides

even more computational power [105]. Lacelli Edge Inferenc-

ing Server AI Acceleration Subsystem uses Lightspeeur 2803S

chips on M.2 cards [106]. Gainboard 2801 provides MPE

capabilities via the PCIe connector [107]. Gainboard 2803

does the same for the other neural accelerator [108]. Janux

G31 AI Server is an AI server with 32 MPE cards [109].

G. Mythic

Mythic’s unique perspective is using an analog engine to run

its M1076 processor [45]. MP10304 Quad-AMP PCIe Card

has four processors [110]. MM1076 M.2 M key card makes

one processor usable via the M.2 bus [111]. ME1076 M.2 A+E

key card offers it in smaller size and bandwidth [112]. There

is also an evaluation system MNS1076 AMP [113].

H. Development boards

Beagle Bone AI is an open-source device featuring TI

C66x digital signal processor (DSP) cores and TI embedded

vision engines (EVE). It is marketed as focusing on everyday

automation, including industrial applications. It has USB and

Ethernet connectivity, along with Wi-Fi and Bluetooth [114].

OpenMV Cam is a microcontroller board for machine vision.

It has a 480p resolution camera and a USB connection. This

small device can run TensorFlow Lite models in addition to

multiple basic machine vision tasks [115]. SparkFun Edge

Development Board Apollo3 Blue is a low-power board

that can run TensorFlow Lite models [116]. Syntiant’s Tiny

Machine Learning Development Board uses their NDP101

Neural Decision Processor. [117] STMicroelectronics’ STM32

microcontroller units can be used for Edge AI solutions [118],

[119], e.g., the STM32L4 Discovery kit IoT node provides a
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development board for IoT [120]. Hailo offers its AI processor

via M.2 and PCIe bus. There are also two evaluation boards

available [51]. Other possible Edge AI hardware vendors in-

clude Adlink [121], Blaize [122], Aetina [123] and ARM with

the Ethos-U65 [124]. Another popular platform is the Rasp-

berry Pi, for example the newest model Raspberry Pi 4 [125].

I. Device tables

Tables I and II list the devices and their basic specifications:

central processing unit (CPU) and possible graphics processing

unit (GPU), neural processing unit (NPU), memory and type of

the device. The NPU can also be a digital signal processing

(DSP) unit. Maximum indicated RAM is also reported. Not

all details were relevant for the device, available, or they

were too ambiguous, so this information is indicated by a

dash (–). We follow the hardware taxonomy proposed by

Li and Liewig [11], but we have extended the system-on-

module to indicate the connection type. We have also marked

server devices as a separate category. Thus, the categories are:

system-on-a-chip (SoC), system-on-module (SOM), single-

board computer (SBC) and server. SOM connection types

include external universal serial bus device (USB), external

M.2 card slot device (M.2), PCIe slot device (PCIe).

V. EDGE AI SOFTWARE

This section lists and explains software projects and tools

that are useful in the context of Edge AI. The section is

subdivided in the following way. Subsection V-A lists the

software that is generally useful for preparing neural network

models for running on resource constrained devices. Subsec-

tion V-B lists the software that is useful when deploying

machine learning models to modern smart phones and other

powerful mobile devices. Subsection V-C lists the software

that is useful when the target is a microcontroller.

A. Neural network model optimization

When speaking about deep learning, the most popular

frameworks are TensorFlow [126], Keras [127] (high level

TensorFlow API) and PyTorch [128] according to Kaggle 2021

survey [129]. These frameworks are optimized at running on

GPUs and other specialised hardware that accelerate the model

training process. After the model has been trained, inference is

not as computationally expensive operation, but even that re-

quires moderate amounts of memory and computation power.

Devices running on the edge are often resource constrained

on that front. There exist techniques that can be used on deep

learning models that reduce the model complexity, memory

and computation requirements with little or no affect to the

model accuracy [130]. Both, TensorFlow and PyTorch, have

some of these methods built in to the frameworks that can be

used to optimize the model performance on low power devices.

TensorFlow has collected the tools and documentation about

this topic under TensorFlow Lite subproject [131]. PyTorch

has a somewhat similar situation with PyTorch Mobile [132],

except that PyTorch Mobile is more of a workflow than a

proper subproject and the tooling is included in the main

PyTorch API. PyTorch Mobile can also target only mobile

devices running Android and iOS, while TensorFlow Lite can

also target embedded systems.

The study by Alqahtani et al. [130] concluded that quan-

tization is the most effective method for model optimization.

In quantization optimization, the 32-bit floating point model

parameters are converted to lower precision integers, which

allows the devices to use more computationally efficient inte-

ger math operations and the model storage requirements are

reduced. Both, TensorFlow and PyTorch, have documentation

and easy to use support for model quantization, although

PyTorch API is still in beta.

In addition to quantization, TensorFlow also supports model

pruning and weight clustering. In model pruning, the model

weights are sparsified so that the model compresses better.

TensorFlow pruning method is explained in detail in [133].

Weight clustering has the same goal with better model com-

pression. The short explanation of weight clustering is that

the layer weights are clustered to N clusters and only the

centroid of every cluster is saved. Weight clustering is ex-

plained in [134]. PyTorch also supports pruning, but it does

not currently have built in support for weight clustering.

B. Edge AI software on mobile devices

Mobile devices that have specialised hardware for neu-

ral network acceleration expose the hardware for developers

through application programming interfaces (API). On devices

that use Android operating system, the API is called Android

Neural Networks API (NNAPI) [135]. On Apple operating

systems the API is called Core ML [136]. The Android NNAPI

is not designed to be used directly by the developers. Instead,

it is intented to be used through some higher-level API like

TensorFlow Lite. The TensorFlow Lite neural network models

are executed on the specialised hardware with TensorFlow Lite

NNAPI delegate [137]. PyTorch also has NNAPI support, but

it is currently still in beta and not very well documented [138].

NNAPI only supports inference on the device, so it cannot be

used for on-device learning. The Apple Core ML framework

also supports both TensorFlow and Pytorch through its Unified

Conversion API [139], and in addition to that, Apple also has

the Create ML framework [140]. It is an easy-to-use interface

for developers to create machine learning models that work

with Core ML. In comparison to NNAPI another difference

is also that Core ML supports on-device training that can be

used to personalise a model to user’s needs on-device.

In addition to Android NNAPI hardware acceleration API,

many vendors have their own software development kits

(SDK) for running hardware accelerated models on their

systems. Qualcomm has the Qualcomm Neural Processing

SDK for AI product [141], Huawei has the HUAWEI HiAI

foundation product [142], Mediatek has the Mediatek Neu-

ropilot product [143], and Samsung has the Samsung Neural

SDK product [144] although Samsung does no longer provide

the SDK to third party developers. Ignatov et al. have a good

section about the vendor specific SDKs in [145], [146]. The

problem with vendor specific SDKs is that the model created
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TABLE I. HARDWARE DEVICE 
SPECIFICATIONS

Device C/GPU NPU memory type

Movidius Myriad X [39] 16-core CPU 700 MHz Neural Compute Engine 2.5 MB SoC

Neural Compute Stick 2 [57] 16-core CPU 700 MHz Neural Compute Engine 2.5 MB USB

Vision Accelerator [58] CPU Neural Compute Engine 4 GB M.2/PCIe

UP Squared 6000 [59] 4-core CPU 2.0 GHz, GPU Neural Compute Engine 64 GB SBC

Kirin 970 [62] 8-core CPU, 12-core GPU Dedicated NPU – SoC

Snapdragon 855+/860 [63] 8-core CPU 2.96 GHz, GPU DSP 16 GB SoC

RK1808 [73] 2-core CPU 1.6 GHz NPU (DDR) SoC

RK3399Pro [74] 6-core CPU NPU (DDR) SoC

Helio P90 [64] 8-core CPU 2.2 GHz, GPU APU 2.0 8 GB SoC

Helio P95 [69] 8-core CPU, GPU APU 2.0 8 GB SoC

i300a [65] 4-core CPU 1.5 GHz, GPU – (DDR) SoC

i300b [66] 4-core CPU 1.3 GHz – 3 GB SoC

i350 [67] 4-core CPU 2.0 GHz, GPU APU 1.0 (DDR) SoC

i500 [68] 8-core CPU 2.0 GHz, GPU APU 2-core 500 MHz (DDR) SoC

Dimensity 1000 [70] 8-core CPU, GPU APU 3.0 16 GB SoC

Dimensity 9000 [71] 8-core CPU, GPU APU 590 (DDR) SoC

Beagle Bone AI [114] 2-core CPU 1.5 GHz, GPU 2x DSP, 2x EVE 1 GB SBC

Coral Accelerator Module [42] – Edge TPU – SoC

Coral USB Accelerator [78] – Edge TPU – USB

Coral M.2 Accelerator [79] – Edge TPU – M.2

Coral M.2 Accelerator with Dual Edge TPU [80] – 2x Edge TPUs – M.2

Coral Mini PCIe Accelerator [81] – Edge TPU – PCIe

Coral Dev Board Mini [82] 4-core CPU 1.5 GHz, GPU Edge TPU 2 GB SBC

Coral System-on-Module [83] 4-core CPU 1.5 GHz, GPU Edge TPU 4 GB SOM

Coral Dev Board [84] 4-core CPU 1.5 GHz, GPU Edge TPU 4 GB SBC

JeVois-A33 [76] 4-core CPU 1.34 GHz, GPU – 256 MB SOM

JeVois Pro [77] 6-core CPU, GPU Neural Processing Unit 4 GB SOM

Lightspeeur 2801S Neural accelerator [44] 100 MHz MPE – SoC

Lightspeeur 5801S Neural accelerator [104] 200 MHz MPE – SoC

Lightspeeur 2803S Neural accelerator [105] 250 MHz MPE – SoC

Lacelli Edge Inferencing Server [106] 32-core CPU 4x MPE 32x 8 GB server

Gainboard 2801 [107] – MPE – PCIe

Gainboard 2803 [108] – MPE – PCIe

Janux G31 AI Server [109] 16-core CPU 32x MPE – server

M1076 [45] – ACE – SoC

MP10304 Quad-AMP PCIe Card [110] – 4x ACE – PCIe

MM1076 M.2 M [111] – ACE – M.2

ME1076 M.2 A+E [112] – ACE – M.2

MNS1076 AMP [113] – ACE – SBC

Kendryte K210 [75] 2-core – – SoC

OpenMV Cam [115] CPU 480 MHz – 1 MB SOM

SparkFun Edge Dev Apollo3 Blue [116] CPU 48 MHz – 384 kB SBC

Syntiant Dev Board [117] CPU 48 MHz NDP101 32 kB SBC

STM32L4 [120] CPU 80 MHz – 128 kB SBC

Hailo-8 [51] – Hailo-8 – SoC

Hailo-8 M.2 [51] – Hailo-8 – SOM

Hailo-8 Mini PCIe [51] – Hailo-8 – SOM

Hailo-8 Century Evaluation Platform [51] – Hailo-8 – PCIe

Hailo-8 Evaluation Board [51] – Hailo-8 – SOM

Raspberry Pi 4 [125] 4-core CPU 1.5 GHz – 8 GB SBC
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TABLE II. JETSON HARDWARE DEVICE 
SPECIFICATIONS

device C/GPU NPU memory type

Jetson Nano [87] 4-core CPU, GPU – 4 GB SOM

Jetson TX2 NX [88] 6-core CPUs, GPU – 4 GB SOM

Jetson TX2 4GB [89] 6-core CPUs, GPU – 4 GB SOM

Jetson TX2 [90] 6-core CPUs, GPU – 8 GB SOM

Jetson TX2i [91] 6-core CPUs, GPU – 8 GB SOM

Jetson Xavier NX 16GB [92] 6-core CPU, GPU 2x NVDLA v1, 2x PVA v1 16 GB PCIe

Jetson Xavier NX [93] 6-core CPU, GPU 2x NVDLA v1, 2x PVA v1 8 GB PCIe

Jetson AGX Xavier 64GB [94] 8-core CPU, GPU 2x NVDLA v1, 2x PVA v1 64 GB SOM

Jetson AGX Xavier [95] 8-core CPU, GPU 2x NVDLA v1, 2x PVA v1 32 GB SOM

Jetson AGX Xavier Industrial [96] 8-core CPU, GPU 2x NVDLA v1, 2x PVA v1 32 GB SOM

Jetson Orin NX [97] 8-core CPU 2.0 GHz, GPU 2x NVDLA v2, PVA v2 12 GB SOM

Jetson AGX Orin [98] 12-core CPU 2.0 GHz, GPU 2x NVDLA v2, PVA v2 32 GB SOM

Jetson Nano Developer Kit [99] 4-core CPU 1.42 GHz, GPU – 4 GB SBC

Jetson Nano 2GB Developer Kit [100] 4-core CPU1.43 GHz, GPU – 2 GB SBC

Jetson Nano Xavier NX Developer Kit [101] 6-core CPU, GPU 2x NVDLA, PVA 8 GB SBC

Jetson AGX Xavier Developer Kit [102] 8-core CPU, GPU 2x NVDLA, PVA 32 GB SBC

Jetson AGX Orin Developer Kit [103] 12-core CPU, GPU 2x NVDLA v2.0, PVA 2.0 32 GB SBC

with one SDK can run only in devices that the vendor specific

SDK supports. For that reason it is better to use the more

generic NNAPI interface if possible.

C. Edge AI software for microcontrollers

Even when a device does not have specialized hardware

for model execution acceleration, the model can always be

executed on CPU. This means that neural network model

inference can be performed on-device even on the tiniest

microcontrollers if the model size is small enough to fit into

memory. The problem with microcontrollers is that very often

they are not running the operating system that projects such

as TensorFlow Lite depend on. This can be solved with Ten-

sorFlow Lite for Microcontrollers library [147]. The project

was created by merging the uTensor project into the main

TensorFlow project [148]. The library is written in C++11 and

works on any 32-bit platform. The model data is stored as a C

array to read-only program memory on the device where the

library can read it. Thus, the library does not need an operating

system or a file system for model creation and inference.

Similar to TensorFlow Lite for microcontrollers is the

deepC project [149]. The project has the same goal of getting

neural network models to work on microcontrollers, but the

approach is very different. The project includes a compiler

that compiles neural network models directly to C++ code

that can then be included in the actual project that uses the

model. All neural network models that can be stored in the

basic neural network variant of the Open Neural Network

Exchange (ONNX) format [150] can be compiled with the

deepC compiler. The ONNX format has good support for

every major deep learning framework, so the project can be

used with a variety of different models and is not restricted

to models created by TensorFlow Lite like the TensorFlow

Lite for microcontrollers is. The project does not support the

ONNX-ML extension of the format that has support for other

machine learning algorithms not based on neural networks.

Somewhat similar to deepC project are the deep learning

compiler projects Glow [151], ONNC [152], TVM [153]

and openVINO [154]. None of these tools are specifically

made for compiling code to microcontroller targets, but many

of them support microcontroller chips. Sponner et al. have

done a good review and a benchmark about these tools

targeting embedded platforms in [155]. From these tools the

TVM project is probably the most interesting. It does not

only contain a compiler for compiling the models to target

platforms, but it also contains an auto-tuning feature that

tests different compilation optimizations on the target platform

to find more optimal compilation results. The project also

includes microTVM subproject specially made for compiling

models to bare metal microcontroller targets, although the

documentation includes a disclaimer that the project is still

under heavy development.

Probably not an exhaustive list, but other libraries and

toolkits for converting neural network models to microcon-

trollers are Neural Network on Microcontroller (NNoM) [156],

X-CUBE-AI [157], e-AI [158], eIQ [159], nncase [160],

NNCG [161] and Embedded Learning Library (ELL) [162].

From these, the NNoM project is the most similar when

compared to TensorFlow Lite for Microcontrollers library and

the deepC project. It is vendor independent, but it supports

only models that are created using Keras. The project includes

a compiler that compiles the Keras code to pure C code. If

the target platform is ARM Cortex-M processor, the compiler

can generate optimized code by utilizing ARM CMSIS NN

Software Library [163], [164]. The ARM CMSIS NN library

includes optimized versions of the functions that are often used
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in neural network models, but it does not include the automatic

conversion tool from other deep learning frameworks, so the

conversion step would be manual without a tool like NNoM.

The X-CUBE-AI project is an extension package from

STMicroelectronics to their STM32CubeMX product.

STM32CubeMX is a graphical user interface that allows

users to create configuration and initialization code to

STM32 microcontrollers [165]. The extension package

supports pretrained machine learning models that are made

with TensorFlow Lite, or that are exported to the ONNX

standard from some other framework. It outputs an optimized

code library that works on STM32 microcontrollers. The

e-AI project from Renesas is similar to this. Instead of

targeting STM32, the tool generates code for Renesas own

microcontroller families. It supports deep learning models

made with TensorFlow, Pytorch or TensorFlow Lite. The

third tool in the same class of vendor specific tools is eIQ

by NXP Semiconductors, supporting TensorFlow and ONNX

input formats. The compilation target is more modular as the

tool supports more inference engines. It can use TensorFlow

Lite, Glow, ARM CMSIS-NN or DeepViewRT [166] to run

the model on the target platform. The last vendor specific

tool is nncase. The generated code targets Kendryte K210 or

K510 chips. It supports TensorFlow Lite and ONNX formats.

From the last two neural network conversion tools listed,

NNCG is more of a research project and the authors discourage

using the tool in production. The project is very similar when

compared to NNoM. It converts Keras models to C code.

The last listed tool, the Embedded Learning Library (ELL)

project is made by Microsoft. It is work in progress, and

the authors warn about unexpected API changes. The project

documentation is also lacking with only few tutorials about

deploying machine learning models to Raspberry Pi single

board computers. The project repository commit history shows

that the project has received only few updates in recent years,

so the project might be obsolete.

Table III summarizes the vendor neutral open-source deep

learning model compilers and converters in a table format for

easier comparison.

The previously listed tools are made for getting neural

network inference to work with microcontrollers. In addition

to them, the more traditional machine learning models can

also be used to do inference on the edge devices. Often

the traditional models are not computationally as demanding

as neural networks, but the problem is that very often the

models are created using some Python based framework

like scikit-learn [167]. It is possible to run Python code on

microcontrollers with a project like MicroPython [168], but

this creates unnecessary overhead for code execution. It is

better to convert the model to more efficient machine code

to save as much as possible of the limited resources that

the microcontrollers have. This is probably not an exhaustive

list, but some of the existing projects to do this conver-

sion are: sklearn-porter [169], emlearn [170], m2cgen [171],

EmbML [172], micromlgen [173], Micro-LM [174], micro-

learn [175] and weka-porter [176]. Except for Micro-LM and

weka-porter, the other conversion projects convert scikit-learn

models to C or C++ code. Support for different models varies.

sklearn-porter and m2cgen can also convert the model to some

other programming language such as Javascript or Java. The

weka-porter project supports only WEKA [177] decision tree

conversions, and the Micro-LM project supports only models

trained with the Desk-LM module [174], although the Desk-

LM module in turn depends on and uses scikit-learn library.

VI. CONCLUSION

The Edge AI ecosystem is still in its infancy. Various

products and services are offered, but many of them are placed

under the umbrella term for marketing purposes. However, the

development of Edge AI as a discipline of its own is evident.

Hardware ranges from special-purpose processors and AI

accelerators to full servers. For many users, the various

system-on-chip solutions can be useful for the final product.

On the other hand, the various development boards and single-

board computers provide a good starting point and prototyping

possibilities. In addition, the USB, M.2 and PCIe bus devices

bring the power of AI acceleration to other devices.

Both of the most popular deep learning frameworks, Tensor-

Flow and PyTorch, can be used to do Edge AI. Between them,

TensorFlow is more suitable for Edge AI purposes. The frame-

work includes better documentation and more out of the box

methods for model optimization than PyTorch. TensorFlow

also supports microcontroller targets with the TensorFlow Lite

for microcontrollers subproject while PyTorch only supports

mobile device operating system targets.

Between Android and Apple mobile device operating sys-

tems support for AI acceleration on hardware, Apple maybe

has a better edge by supporting on-device training and having

the Create ML framework for creating AI models in addition

of supporting all of the most popular AI frameworks.

Edge AI for microcontrollers comes with the most software

offerings. The workflow of getting AI models running on

microcontroller hardware has not yet found a best practice that

everyone uses. There seem to be three competing approaches:

1) Using a runtime that loads the model data from read-

only device memory at runtime

2) Using transcompiler that compiles model to C or C++

code that then can be used in the project

3) Using a compiler that compiles the model to a library

that is statically or dynamically linked to the project

The good thing is that many of these projects support the

ONNX model format, which could mean that benchmarking

the different projects with the same model might be easier.

In the future, a standardized software API to access hard-

ware acceleration could offer a more productive develop-

ment experience. Standardized software workflows or, at least,

commonly accepted reference specifications would be highly

useful. Software terminology needs unification across research

and vendors. Furthermore, security considerations should be

studied further, as many of the Edge AI solutions could suffer

from the same vulnerabilities as common IoT systems.
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TABLE III. OPEN-SOURCE DEEP LEARNING MODEL 
COMPILERS

Project License Supported models Tool output Platform support requirements

TensorFlow lite
for microctonrollers [147]

Apache-2.0 TensorFlow TensorFlow lite flat buffer C++ compiler

deepC [149] Apache-2.0 ONNX C++ code C++ compiler

Glow [151]* Apache-2.0
ONNX, Caffe2,
TensorFlow Lite

Compiled library bundle
(object, header and weight files)

LLVM support

ONNC [152] BSD-3-Clause ONNX C code and binary weight files C compiler

TVM [153] (microTVM) Apache-2.0

TensorFlow, TensorFlow Lite,
Keras, PyTorch, ONNX,
Core ML, caffe2, mxnet,

PaddlePaddle

C code or compiled object file,
Graph JSON file and

Parameter file

C compiler and
standard library

NNoM [156] Apache-2.0 Keras C code C compiler

* Ahead-of-time compilation mode
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