
Survey of Approaches to Non-Realistic Neural Style
Transfer

Arina Varlamova, Victor Kitov
Lomonosov Moscow State University

Moscow, Russia

avarlamova1996@gmail.com, v.v.kitov@yandex.ru

Abstract—Despite researchers interest toward style transfer
problem, there is still no foremost method available. Difficulties in
problem formalization make a comparison of methods especially
complicated. This paper covers twelve widely used algorithms in
order to provide their comprehensive description and advantages
one over another.

I. INTRODUCTION

Style transfer is an actively studied problem at the intersec-

tion of art and technology. In general, style transfer is defined

as a generation of a new image for which the content of one

image will be preserved but displayed in the style of the second

image (Fig. 1).

This kind of unrealistic image rendering provokes user in-

terest. For example, the Prisma app was the leading application

on Google Play in the CIS countries for the first ten days after

release and continues to be popular. Of course, Prisma is not a

single app with such functionality. Other examples are Artiso

or Vinci mobile apps and online image stylings services such

as alterdraw.com and deepart.io.

So, what makes style transfer a complex problem? The main

challenge is a formalization of style. A style is characterized

by multiple parameters such as the color composition, the

shape of the strokes, the ratio of light and shadow, and many

others. How to describe them mathematically? This question

reveals the main difficulties a researcher in this field would

face.

As in many other tasks related to image processing, methods

based on convolutional neural networks have shown particular

success in the field. This paper aims to provide a comprehen-

sive comparison of the most applicable approaches to neural

style transfer. Usually, in review articles that consider this

problem in detail, a computational comparison is made or

a description of algorithms is given without comparison. A

distinctive feature of this work is the qualitative comparison

in addition to the computational one.

Fig. 1. Example of style transfer. From left to right: style image, content
image, generated stylized image produced by Gatys method

As part of the study, twelve methods were selected and

compared according to user preferences and computational

performance, such as memory and time consumption. Methods

were selected based on the conceptual novelty of network ar-

chitecture or loss function, mostly followed by a high number

of citations. Among the considered methods are approaches

based on optimization, patch replacement, fast generalized and

non-generalized style transfer methods.

II. NEURAL STYLE TRANSFER APPROACHES

A. Optimization-based offline neural methods

Convolutional neural networks were first applied to the style

transfer problem in [1] (Gatys). The main idea here was to use

the feature space of the VGG network [2]. Let Ic be the content

image, V GGc encoded input image at some layer l with Nl

feature maps size of Ml. In these definitions, feature maps

at layer l are represented as matrix V GGl
c ∈ R

Nl×Ml , where

V GGl
cij is an activation of i-th convolution at j-th position

of layer l.

To visualize information encoded in such a way the gradient

descent on white noise image can be used. It would allow

finding an image that would correspond to the same activation

as the original one. Let Ig be this generated image and V GGl
g

its corresponding feature maps. The loss function then can be

defined as follows:

Lcontent(Ic, Ig, l) =
1

2

∑
i,j

(V GGl
cij − V GGl

gij
)2.

A randomly generated image Ig can be modified this way

to meet the same activation as a content image Ic. When a

convolution network is trained, it learns to transform an image

into a numerical representation on every layer. With each layer,

these representations get more and more sensitive to complex

objects (content) but are not restricted to pixel values.

For style representation authors proposed to use correlations

between activation of different convolutions at some layer l in

form of Gram matrices Gl
ij ∈ R

Nl×Nl , where Gl
ij is an inner

product between i-th and j-th feature maps:

Gl
ij =

∑
k

V GGl
ikV GGl

jk.

__PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

Let Is be a style image and V GGl
s its corresponding feature

maps. Then a contribution of l layer to loss function is:

El =
1

4N2
l M

2
l

∑
i,j

(Gg
l
ij − Gs

l
ij)

2,

and full style loss is defined as follows:

Lstyle(Is, Ig) =

L∑
l=0

wlEl,

where coefficients wl aim to give weights to different layers.

So, in introduced terms, the style transfer can be achieved

through a generation of a new image that would meet style

and content loss simultaneously:

Ltotal(Ig, Ic, Is) = αLcontent(Ig, Ic) + βLstyle(Ig, Is), (1)

with α and β as weight parameters.

The Gatys method usually provides visually pleasing results

and still is a baseline method to compare with. A stylized

image produced by this method can be seen on Fig. 1.

Another example of optimization-based approach proposed

in [3] (STROSS). The loss function is also minimized through

image Ig:

L(Ig, Ic, Is) =
α�c + �m + �r +

1
α�p

2 + α+ 1
α

,

but content and style loss are different.

For a set of layers l1, ..., lL feature maps

V GGl1(I), ..., V GGlL(I) are interpolated to keep their

resolutions the same as in Ic and are further concatenated.

This approach allows getting an image representation that

would include features from all network layers.

The main idea of the style loss function comes from earth

mover distance (EMD). Relaxed earth mover distance (REMD)

was proposed to speed up computations:

�r = REMD(V GGg, V GGs) =

max

⎛
⎝ 1

n

∑
i

min
j

Cij ,
1

m

∑
j

min
i

Cij

⎞
⎠ ,

where C is a matrix that defines how far an element from

V GGg lies from an element from V GGs:

Cij = cos(V GGgi, V GGsj) = 1− V GGgi · V GGsj

||V GGgi||||V GGsj ||
.

Cosine distance ignores vector magnitude, so to avoid

artifacts additional component �m is introduced:

�m =
1

d
||μg − μs||1 + 1

d2
||Σg − Σs||1,

where μ and Σ are mean and covariance.

The last component of style loss is �p which aims to match

color palettes between Ig and Ic. It is achieved through REMD

between pixels color in generated image I
(t)
g at iteration t and

style image Is but with euclidean distance instead of cosine.

Content loss is based on matrices of paired cosine distance

DIc and DIg between feature vectors from Ic and I
(t)
g

correspondingly:

Lcontent(Ig, Ic) =
1

n2

∑
i,j

∣∣∣∣∣
D

Ig
ij∑

i D
Ig
ij

− DIc
ij∑

i D
Ic
ij

∣∣∣∣∣ .
The method is applied iteratively to images with increasing

resolution. Although computations take a significant amount

of time, the method is highly competitive since it allows to

keep large features from style images as shown in Fig. 2.

Fig. 2. Stylized image produced by STROSS method. Sunflowers are kept
through style transfer

B. Fast non-generalized methods

A natural development of the Gatys method [1] was pro-

posed in [4]. To achieve real-time performance authors used

an additional transformer network T (·) which was trained with

loss function introduced in Eq. 1:

L = L(N(Ic), Ic, Is).

A simple encoder-decoder architecture was used in [4], but

this approach got further improved in [5] with the usage

of a U-Net architecture (UNet) [6]. Produced images are

visually pleasing but mostly keep only color palette rather

than the shape of stroke or other style characteristics. It was

also noticed during evaluation that for some styles trained

transformers tend to produce artifacts on a generated image

as illustrated in Fig. 3.

C. Fast generalized methods

Another step was to give a transformation network ability

to generalize on several styles. For instance, method MSG-

NET [7] uses an additional layer to achieve it. Image is

also generated through loss function as in Eq. 1, which is

approximated as:

Ig = Dim−1
[
Dim(V GGl

c)
TWG(V GGl

s)
]T

,

Fig. 3. Stylized image with artefacts generated by UNet method

__PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

-- 356 --

where W ∈ R
Ci×Ci is a weight matrix and Dim(·) transforms

feature maps to R
Cl×(HlWl) dimension.

Siamese network N(·) takes both content and style images

and their feature maps are blended with the usage of layer W .

The method is resistant to artifacts, but sometimes color

palettes do not align perfectly between produced and style

images, as shown in Fig. 4.

Another approach is to use adaptive instance normalization

(AdaIn) which was introduced in [8]. Instead of learnable

parameters, authors proposed to use a special normalization

layer:

AdaIN(Ic, Is) = σ(Is)

(
Ic − μ(Ic)

σ(Ic)

)
+ μ(Is).

Then an encoder-decoder network with fixed weights in the

encoder part Enc(·) is trained. This network takes both images

of content and style and applies a normalization afterward in

feature space:

t = AdaIN(Enc(Ic), Enc(Is)).

A decoder Dec(·) is then trained to transform t back to

image space with a loss function defined as follows:

Lc = ||Enc(Dec(t))− t||2,
and

Ls =

L∑
l=1

||μ(V GGl(Dec(t)))− μ(V GGl(Is))||2+

L∑
l=1

||σ(V GGl(Dec(t)))− σ(V GGl(s))||2.
(2)

During the evaluation, the method showed a great performance

on a variety of content and style images. It was observed, how-

ever, that sometimes it produces artifacts on a homogeneous

background as shown in Fig. 5.

An approach with a fixed (but potentially unlimited) amount

of styles was proposed in [9] (StyleBank). It is achieved

through a network composed of three parts: an encoder,

a decoder, and a StyleBank layer K with two learnable

branches: an autoencoder (Enc → Dec) and a styling branch

(Enc → K → Dec). A stylized image can be obtained by

convolving content image features with the StyleBank layer

Fig. 4. Image stylized with MSG-Net method

Fig. 5. Artifacts on background produced by AdaIn method

{Ki}, i = 1, 2, ..., n for n styles and decoding them with the

decoder part Dec(·).
Two loss functions were used in the process of training. The

first one is applied in the autoencoder branch:

LI(Ic, Ig) = ||Ig − Ic||2,
and in styling branch classical Gatys loss function from Eq. 1

were used.

Approach similar to AdaIN was introduced in [10] (WCT).

Instead of using adaptive instance normalization authors pro-

posed to apply whitening and coloring transformation in

feature space.

Whitening transformation is performed as follows. First of

all, a vector μc of mean is subtracted from feature maps

V GGc. They are then linearly transformed to ˆV GGc in such

a way to meet ˆV GGc
ˆV GGc

T
= I:

ˆV GGc = EcD
− 1

2
c ET

c Fl,

where Dc a diagonal matrix consisting of eigenvalues of

matrix V GGcV GGT
c and Ec is an orthogonal matrix of

eigenvectors such V GGcV GGT
c = EcDcE

T
c .

The next step is a coloring transform. As in whiten-

ing transform firstly a vector of μs of means is

subtracted from V GGs. A goal here is to obtain

V GGcs : ˆV GGcs
ˆV GGcs

T
= V GGsV GGT

s :

ˆV GGcs = EsD
1
2
s E

T
s F̂l.

To conclude, a vector μs is added to ˆV GGcs.

A transforming network is then trained with the following

loss function:

L = ||Io − Ii||22 + λ||V GG(Io)− V GG(Ii)||22.
An interesting peculiarity of the WCT method is how it

affects human faces. As can be seen in Fig. 6, the form of

eyes, lips, and nose had changed significantly during the style

transfer process.

An approach with an additional transformer network is

proposed in [11] (StylePredictor). A network P ()̇ takes a style

image as input and predicts its vector representation �S. It

is further concated with feature maps of styling transformer

network which is trained with loss function introduced in Eq.

1.

__PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

-- 357 --

Fig. 6. Images stylized with WCT method

Similar to AdaIn, a background problem was observed for

this method as well. To elaborate, several stylized images with

artifacts on the sky area are demonstrated in Fig. 7.

An approach utilizing an attention mechanism (SANET)

was proposed in [12]. It is based on an additional module

that uses feature maps of content and style images to make a

stylized internal representation:

Encics =
1

C

∑
∀j

exp(f(Encic)g(Encjs))h(Encjs),

where f(Encc) = WcEncc, g(Encs) = WgFs and

h(Encs)) = WhEncs, and Wf , Wg , Wh are

convolutions 1× 1. Normalizing factor is represented

by C =
∑

∀j exp(f(Encic)
T g(Encjs)), where i – index of

output position, and j is an index from set of all possible

positions.

Convolution 1× 1 is applied to obtained feature maps and

then is added to feature maps for content image:

Enccsc = Encc + Enccs.

Fig. 7. Images stylized with StylePredictor method

Such feature maps are obtained for layers Relu 4 1 and

Relu 5 1 are then combined into one:

Encmcsc = conv3×3(Encr 4 1
csc + upsampling(Encr 5 1

csc)),

which is further decoded into stylized image.

A transformer network is trained with a following loss

function:

L = λcLc + λsLs + Lidentity,

where Ls corresponds to a loss defined in Eq. 2 and a content

loss is defined as:

Lc = ||Enc(Ig)r 4 1 − Enc(Ic)r 4 1||2+
||Enc(Ig)r 5 1 − Enc(Ic)r 5 1||2,

and Lidentity:

Lidentity = λi1(||(Icc − Ic)||2 + ||(Iss − Is)||2)+

λi2

L∑
i=1

(||V GGi(Icc)− V GGi(Ic)||2+

||V GGi(Iss)− V GGi(Is)||2),

where Icc (or Iss) is a stylized image from two images of

content (style).

In the paper [13] authors paid attention to the ”content

loss” problem. They stated that in methods [8], [10], [14]

content can be lost if style transfer is applied repeatedly.

To address this issue authors proposed to use a projection-

transfer-inversion approach instead of standard encoding-

transfer-decoding (ArtFlow).

The architecture of the proposed network is composed

of PFN (Projection Flow Network) blocks which are fully

reversible. Each of them consists of three parts: additive

coupling, reversible 1× 1 convolution, and Actnorm.

1) Additive coupling: Let x and y be input and output

tensors for additive coupling (AC). Then y is obtained as

xa, xb = split(x)

yb = NN(xa) + xb

y = concat(xa, yb).

Here function split(·) splits a tensor into two parts along

channels dimension and NN(·) is a some neural network

where sizes of an input and an output are the same.

2) Reversible convolution: Since AC layer is applied only

to half of the feature maps, it is necessary to change their

number in order to make each dimension influence others.

Such transformation may be defined with the usage of 1× 1
convolution:

yi,j = Wxi,j ,

and the reverse transformation is xi,j = W−1yi,j .

__PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

-- 358 --

3) Actnorm: Actnorm is an alternative to batch normaliza-

tion. It is defined as

yi,j = w ⊗ xi,j + b,

where i, j is a spatial position in tensor, w and b are param-

eters of scale and translation for affine transformation which

can be learned. Reverse transformation can be achieved as

xi,j =
(yi,j−b)

w .

As an algorithm for neural style transfer itself AdaIn or

WCT are proposed.

D. Patch-based methods

One of the most early methods was proposed in [15]. It’s

based on procedure called style swap:

1) First step is to split feature maps V GGs and V GGc into

intersecting patches {vggis}i∈ns
and {vggic}i∈nc

.

2) For each patch of content the nearest style patch is se-

lected, defined by normalized cross-correlation measure:

φss
i (Ic, Is) = argmax

sj(Is),j=1,...,ns

〈vggic, vggis〉
||vggic|| · ||vggis||

. (3)

3) Each patch of content is replaced by the closest patch

of style.

4) Patches are averaged into new feature map Φss(Ic, Is).

Stylized image can then be found as a solution for the

optimization task

Ig(Ic, Is) = argmin
Ig∈Rh×w×d

||V GGg − Φss(Ic, Is)||2F + λ�TV (Ig),

(4)

where

�TV (I) =
h−1∑
i=1

w∑
j=1

d∑
k=1

(Ii+i,j,k − Ii,j,k)
2

+

h∑
i=1

w−1∑
j=1

d∑
k=1

(Ii,j+1,k − Ii,j,k)
2.

To speed up computations authors proposed to train another

CNN to get an approximate solution for Eq. 4.

The method is generalized by multiple styles and shows

good performance, however resulting images do not keep all

style features. The color scheme is also preserved poorly as

can be seen in Fig. 8.

Fig. 8. Image stylized with StyleSwap method

Fig. 9. Image stylized with Avatar-Net method

An approach presented in [14] (AvatarNet) unifies methods

introduced in [15], [10], [8]. Firstly a projection of feature

maps Encc and Encs into a similar space is performed:

Encc = Wc ⊗ (Encc − μ(Encc)),

Encs = Ws ⊗ (Encs − μ(Encs)),

where Wc and Ws are some form of decorrelating matrices.

The second step is to replace patches from Encc with the

closest patches of Encs as in Eq. 3. A coloring transformation

is then applied to an obtained representation Enccs.

A transformer network is trained as a simple autoencoder

with the following loss function:

L = ||Ic−Ig||22+λ1
1

|I|
∑
l∈I

||V GGl
c−V GGl

g||22+λ2LTV (Ig),

where I contains layers conv1 1, conv2 1, conv3 1 and

conv4 1.

As in StyleSwap, this method still shows poor performance

on keeping main style features, but the color scheme is

preserved more precisely as shown in Fig. 9.

III. EVALUATION

11 images of content and 16 images of style were selected

to compare methods. For evaluation, official Pytorch versions

or unofficial popular Pytorch versions were used. For the

StylePredictor method a Pytorch version wasn’t found, so a

TensorFlow-based one was used instead.

NVIDIA Tesla P100 GPU was used for calculation pur-

poses. For qualitative evaluation, 4 styles and 6 contents

(24 combinations in total) were selected. Respondents were

presented with a selection of stylized images to choose the

most visually pleasing version in a manner of a blind study.

Image examples are shown in Fig. 10.

The comparison was made based on user preferences

(n=74). Fig. 11 (a and b) represents the comparison based

on the overall amount of votes per method and an amount of

content-style pairs where the method got the most votes. Fig.

11 (c) shows the entropy calculated on percentages of votes

to different content-style pairs (the lower value indicates the

pair where the most popular method got more votes compared

to others). It can be easily seen that respondents prefer the

STROSS method, since it is leading by overall votes, and got

the highest score in pairs amount. It also leads with more

certainty when chosen (has lower values of entropy).

The STROSS method, however, is optimization-based. It

cannot be used in real-time and shows the worst performance

__PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

-- 359 --

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

4

5

6

7

8

9

10

11

12

Fig. 10. An example of stylized images for respondents. Left image represents high level of disagreement between annotators (high entropy). Right image
represents high level of concordance between annotators (low entropy). Upper left corner for both images contain style and content images. Other images
are stylized version of images for: 1) Gatys, 2) StyleSwap, 3) MSG-Net, 4) AdaIN, 5) StyleBank, 6) WCT, 7) StylePredictor, 8) Avatar-Net, 9) SANET, 10)
ArtFlow, 11) STROSS, 12) Unet methods

G
a
ty
s

S
ty
le
S
w
a
p

M
S
G
-N
e
t

A
d
a
IN

S
ty
le
B
a
n
k

W
C
T

S
ty
le
P
re
d
ic
to
r

A
v
a
ta
r-
N
e
t

S
A
N
E
T

A
rt
F
lo
w

S
T
R
O
S
S

U
N
e
t

0

50

100

150

200

250

300

350

400

V
o
te
s
 p

e
r

m
e
th

o
d

a)

G
a
ty
s

S
ty
le
S
w
a
p

M
S
G
-N
e
t

A
d
a
IN

S
ty
le
B
a
n
k

W
C
T

S
ty
le
P
re
d
ic
to
r

A
v
a
ta
r-
N
e
t

S
A
N
E
T

A
rt
F
lo
w

S
T
R
O
S
S

U
N
e
t

0

2

4

6

8

10

12

A
m
o
u
n
t

o
f

w
o
n
 q

u
e
s
ti

o
n
s

b)

U
N

e
t
 В

1

S
T
R

O
S
S
 В

2

S
A

N
E
T
 В

3

S
T
R

O
S
S
 В

4

M
S
G

-N
e
t
 В

5

A
d
a
IN

 В
6

S
A

N
E
T
 В

7

A
d
a
IN

 В
8

S
ty

le
P
re

d
ic

to
r

В
9

S
T
R

O
S
S
 В

1
0

S
T
R

O
S
S
 В

1
1

S
T
R

O
S
S
 В

1
2

S
T
R

O
S
S
 В

1
3

S
T
R

O
S
S
 В

1
4

S
T
R

O
S
S
 В

1
5

S
T
R

O
S
S
 В

1
6

S
ty

le
P
re

d
ic

to
r

В
1

7

S
T
R

O
S
S
 В

1
8

G
a
ty

s
 В

1
9

G
a
ty

s
 В

2
0

S
T
R

O
S
S
 В

2
1

S
T
R

O
S
S
 В

2
2

S
T
R

O
S
S
 В

2
3

S
A

N
E
T
 В

2
4

Entropy 1.9 2.1 2.1 1.8 2.2 2.3 2.1 2.2 2.1 2.1 2 1.7 1.9 2 1.4 1.7 1.7 1.9 2 2.3 2.2 2.2 2.1 2.1

 c)

Fig. 11. Comparison of methods by user preferences

(Table I). Considering computational resources the optimal

methods are AdaIn, StylePredictor, SANET, and UNet with

a mean computational time of fewer than 0.1 seconds and

mean memory consumption of less than 3000 MB. UNet and

SANET are also second and third best methods based on user

preferences.

G
a
ty
s

S
ty
le
S
w
a
p

M
S
G
-N
e
t

A
d
a
IN

S
ty
le
B
a
n
k

W
C
T

S
ty
le
P
re
d
ic
to
r

A
v
a
ta
r-
N
e
t

S
A
N
E
T

A
rt
F
lo
w

S
T
R
O
S
S

U
N
e
t

−8

−6

−4

−2

0

2

4

T
im

e
,

ln
(s

)

G
a
ty
s

S
ty
le
S
w
a
p

M
S
G
-N
e
t

A
d
a
IN

S
ty
le
B
a
n
k

W
C
T

S
ty
le
P
re
d
ic
to
r

A
v
a
ta
r-
N
e
t

S
A
N
E
T

A
rt
F
lo
w

S
T
R
O
S
S

U
N
e
t

2000

4000

6000

8000

10000

M
e
m
o
ry
,
M

b

Fig. 12. Comparison of time and memory consumption

TABLE I. RESOURCES BASED
COMPARISON

Method Time (s) Memory (MB)
Gatys [1] 47.17 ± 7.998 4955.686 ± 163.938

StyleSwap [15] 0.003 ± 0.030 7307.233 ± 958.834
MSG-Net [7] 0.009 ± 0.002 5168.98 ± 726.420

AdaIN [8] 0.005 ± 0.001 1053.921 ± 52.421
StyleBank [9] 0.003 ± 0.0004 3457.338 ± 35.056

WCT [10] 1.265 ± 0.325 1715.886 ± 221.031
StylePredictor [11] 0.055 ± 0.089 2737.717 ± 317.063

Avatar-Net [14] 0.465 ±0.066 4342.512 ± 150.471
SANET [12] 0.009 ± 0.006 1247.193 ± 82.209
ArtFlow [13] 0.466 ± 0.057 3777.144 ± 80.016
STROSS [3] 70.356 ± 3.012 2545.589± 107.3

UNet [5] 0.044 ± 0.008 914.560724 ± 91.432

Fig. 12 shows how resources consumption changes depend-

ing on different image sizes. In AdaIn, SANET, and UNet

methods increased size has a lower impact on performance

compared to StylePredictor.

In addition, in Fig. 14 shown stylized images with higher

amounts of votes. For all four presented style images, there

is at least one content image where the method STROSS was

chosen as the best one. The same, however, cannot be said

about content images. Fig. 13 demonstrates an example of

such image and corresponding stylizations.

This may potentially indicate, that for the STROSS method

the greater impact on result is made by content image rather

than style.

Fig. 13. Stylized images produced by STROSS method for flowers content
image

__PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

-- 360 --

⋆ ⋆ ⋆

⋆

⋆ ⋆ ⋆

⋆ ⋆

⋆ ⋆ ⋆ ⋆

Fig. 14. Stylized images with the highest amount of votes. � indicates images produced by STROSS

IV. CONCLUSION

Usage of convolutional neural networks allowed to achieve

greater performance in the image processing field, which is

also true for the problem of style transfer. The absence of

common comparison techniques, however, makes it difficult

to understand the advantage of one method over another.

This survey offers a detailed description of widely used

methods of neural style transfer and provides their qualitative

and quantitative comparison. STROSS showed the best results

based on user preferences. This method, however, cannot be

used in a variety of applications requiring real-time perfor-

mance. In the case of limited resource availability, the best

results were achieved by UNet, which can be applied only to

one style, and SANET which does not have this disadvantage.

REFERENCES

[1] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer using
convolutional neural networks,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 2414–2423.

__PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

-- 361 --

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[3] N. Kolkin, J. Salavon, and G. Shakhnarovich, “Style transfer by relaxed
optimal transport and self-similarity,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
10 051–10 060.

[4] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time
style transfer and super-resolution,” in European conference on computer
vision. Springer, 2016, pp. 694–711.

[5] M.-M. Ho, J. Zhou, and Y. Fan, “Respecting low-level components of
content with skip connections and semantic information in image style
transfer,” in European Conference on Visual Media Production, 2019,
pp. 1–9.

[6] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234–241.

[7] H. Zhang and K. Dana, “Multi-style generative network for real-time
transfer,” in Proceedings of the European Conference on Computer
Vision (ECCV) Workshops, 2018, pp. 0–0.

[8] X. Huang and S. Belongie, “Arbitrary style transfer in real-time with
adaptive instance normalization,” in Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 2017, pp. 1501–1510.

[9] D. Chen, L. Yuan, J. Liao, N. Yu, and G. Hua, “Stylebank: An explicit
representation for neural image style transfer,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
1897–1906.

[10] Y. Li, C. Fang, J. Yang, Z. Wang, X. Lu, and M.-H. Yang, “Universal
style transfer via feature transforms,” in Advances in Neural Information
Processing Systems, 2017.

[11] G. Ghiasi, H. Lee, M. Kudlur, V. Dumoulin, and J. Shlens, “Exploring
the structure of a real-time, arbitrary neural artistic stylization network,”
2017.

[12] D. Y. Park and K. H. Lee, “Arbitrary style transfer with style-attentional
networks,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 5880–5888.

[13] J. An, S. Huang, Y. Song, D. Dou, W. Liu, and J. Luo, “Artflow: Unbi-
ased image style transfer via reversible neural flows,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 862–871.

[14] L. Sheng, Z. Lin, J. Shao, and X. Wang, “Avatar-net: Multi-scale zero-
shot style transfer by feature decoration,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp.
8242–8250.

[15] T. Q. Chen and M. Schmidt, “Fast patch-based style transfer of arbitrary
style,” 2016.

__PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

-- 362 --

