Cross-Domain Interoperability: a Case Study

Jukka Honkola, Hannu Laine, Ronald Brown, and Ian Oliver

Nokia Research Center
P.O. Box 407
FI-00045 NOKIA GROUP
jukka.honkola@nokia.com, hannu.e.laine@nokia.com
ronald.brown@nokia.com, ian.oliver@nokia.com

Abstract. We describe a case study of the behaviour of four agents using a space
based communication architecture. We demonstrate that interoperability may be
achieved by the agents merely describing information about themselves using an
agreed upon common ontology. The case study consists of an exercise logger,
a game, a mood rendered attached to audio player and phone status observing
agents. The desired scenario emerges from the independent actions of the agents

1 Introduction

Interoperability between devices and the software and applications that run on those
devices is probably the major goal for many developers of such systems. This can be
achieved in a number of ways: particularly through open, agreed standards or often
through monopoly. Whichever particular ‘interoperability’ route is taken there will al-
ways be a plurality of standards relating to how such systems communicate [6][1].

For example, the Universal Plug and Play interoperability standard is plagued with
manufacturer and device specific variations which complicate and nullify to some extent
the long and complex standardization process employed to avoid this.

Technologies such as the Semantic Web [2] provide enablers for solutions to these
problems. Within the Semantic Web exist information representation formats such as
the Resource Description Framework (RDF) [10] and the web ontology language OWL [9]
which themselves build upon enablers such as XML. Using these technologies we can
address and provide solutions' to the interoperability problem.

At one level there are existing solutions such as Web Services (SOAP, WSDL,
UDDI etc) and various stacks of middleware for processing representation formats and
preservation and reasoning about the semantics of messages. At the other, there are
solutions based around more declarative mechanisms such as TripCom [11] and the
space-based solutions, for example Java Spaces [4] for the transport and processing of
messages and information to assist in interoperability.

We do not believe that interoperability will be achieved through standardization
committees, nor through standard, globally accepted semantics and ontologies but rather
by the unification of semantics in a localized manner, as described in previous work [8].

! plural, never singular!

In this paper we describe an approach to solving the interoperability problem through
a combination of context gathering, reasoning and agents within a space-based infras-
tructure taking advantage of technologies such as RDF. We demonstrate this through
the ad hoc integration or mash-up of a number of distinct applications to demonstrate
the principles of this approach.

2 The M3 Concept

The M3 system consists of a space based communication mechanism for independent
agents. The agents communicate implicitly by inserting information to the space and
querying the information in the space. The space is represented by one or more se-
mantic information brokers (SIBs), which store the information as an RDF graph. The
agents can access the space by connecting to any of the SIBs making up the space by
whatever connectivity mechanims the SIBs offer. Usually, the connection will be over
some network, and the agents will be running on various devices. The information in
the space is the union of the information contained in the participating SIBs. Thus, the
agent sees the same information content regardless of the SIB to which it is connected.
The high-level system architecture is shown in Figure 1.

\SIB \ / M3 Space
SIB \

SIB

Fig. 1. A diagram of the general system architecture: Agents, M3 spaces and SIBs.

The agents may use five different operations to access the information stored in the

space:

Insert : Insert information in the space

Remove : Remove information from the space

Update : Atomically update the information, i.e. a
combination of insert and remove executed
atomically

Query : Query for information in the space

Subscribe : Set up a persistent query in the space;
changes to the query results are reported to
the subscriber

In addition to the four access operations there are Join and Leave operations. An
agent must have joined the space in order to access the information in the space. The
join and leave operations can thus be used to provide access control and encrypted
sessions, though the exact mechanisms for these are still undefined.

In its basic form the M3 space does not restrict the structure or semantics of the
information in any way. Thus, we do not enforce nor guarantee adherence to any specific
ontologies, neither do we provide any complex reasoning”. Furthermore, information
consistency is not guaranteed. The agents accessing the space are free to interpret the
information in whatever way they want.

We are planning to provide, though, a mechanism to attach agents directly to the
SIBs. These agents have a more powerful interface to access the information and can
be e.g. guaranteed exclusive access to the information for series of operations. Such
agents may perform more complex reasoning, for example ontology repair or translation
between different ontologies. However, they may not join any other spaces but are fixed
to a single SIB and thus a single space.

The M3 spaces are of local and dynamic nature, in contrast to semantic web which
embodies Tim Berners-Lee’s idea of semantic web [2] as a “giant global graph”. The
locality and dynamicity—we envision that the spaces will store very dynamic context
information, for example—poses different challenges than the internet-wide semantic
web. For example, in order to provide a true interoperability for local ubiquitous agents,
the space (i.e. SIBs) will have to provide a multitude of connectivity options in addition
to http: plain TCP/IP, NoTA [7], Bluetooth,. . . Furthermore, the space should be fairly
responsive. While we do not aim for real-time or near real-time system, even half minute
long response times for operations are unacceptable.

The responsiveness is one of the factors behind the fundamental decision to not en-
force any specific ontologies and allowing the agents to interpret the information freely,
as it lessens the computational burden of the infrastructure. Another, and more impor-
tant reason is that we explicitly want to allow mashing up information from different
domains in whatever way the agents see best. Strict ontology enforcement would make
this kind of activity extremely difficult as all new ways of mashing up the information
would require approval from some ontology governance committee. However, as men-
tioned above, we still plan to provide means for ontology enforcement for cases where
the space provider explicitly wishes to restrict the ways the information is used as there
are bound to be also situations where this is the best approach.

The information content in a M3 space may be distributed over several SIBs. The
distribution mechanism assumes that the set of SIBs forming a M3 space are totally
routable but not necessarily totally connected. The information content that the agents
see is the same regardless the SIB where they are connected.

2.1 Applications in M3 Spaces

The notion of application in M3 space is differs radically from the traditional notion
of a monolithic application. Rather, as a long term vision, we see the applications as
possible scenarios which are enabled by certain sets of agents. Thus, we do not see an

2 The current implementation of the concept understands the owl:sameAs concept

email application running in M3 space, but we could have a collection of agents present
which allow for sending, receiving, composing and reading email.

For this kind of scenario based notion of application, we also would like to know
whether the available agents can succesfully execute the scenario. The envisioned model
of using this system is that the user has a set of agents which are capable of executing
certain scenarios. If a user needs to perform a new scenario that the current set of agents
are not capable of executing, she could go and find a suitable agent from some directory
by describing the desired scenario and the agents she already has.

Thus, we need some formal or semi-formal way of describing agent behavior both
with respect to the M3 space and to the environment. While there exists research ad-
dressing behavior in multi-agent systems, for example by Herlea, Jonker, Treur and
Wijngaards [5], this kind of ad-hoc assembly of agents in order to execute a certain
scenario seems to be quite unaddressed in current research. However, slightly similar
problems have been addressed in e.g. web service orchestration research [3], but these
still seem to concentrate on design-time analysis rather than run-time analysis.

As for shorter term, our vision is that sets of existing applications would be en-
hanced by being able to interoperate and thus allow execution of (automatic) scenarios
that would have been impossible or required extensive work to implement without the
M3 approach.

3 The Case Study

The case study consists of four agents, Exercise logger, SuperTux game, Phone line
observer, and Mood renderer, running on several devices. The exercise logger and phone
line observer run on Nokia S60 platform phones, and the SuperTux and mood renderer
run on Nokia N80O internet tablets. The M3 space infrastructure runs on a Linux laptop.

3.1 Application Development Vision

The case study setup illustrates a “legacy enhancement” approach to application devel-
opment in M3 spaces. Conceptually, we added M3 space capability to existing applica-
tions (SuperTux, Mood renderer, SportsTracker, Telephony) even if the SportsTracker
and Telephony were implemented as standalone simple applications for practical rea-
sons.

The starting point for the case study was a single person (as defined in Person ontol-
ogy, section 3.2) who would be exercising and tracking the workouts with an exercise
logger, playing computer games and listening to music. The goal was to demonstrate the
benefits of interoperability between existing application, that is, to be able to execute
a scenario where the SuperTux game would award extra lives for exercising, a mood
renderer embedded in a media player would play suitable music depending on a game
state, and the game and media player would react accordingly if the person receives a
call.

3.2 Ontologies

The ontologies used in this case study have been defined informally, and are not en-
forced in any way. The different components of the case study assume that they are
used correctly. A pseudo-UML diagram of the complete ontology is shown in Figure 2,
and an example instantiation of the ontology when a game is being played and the
phoneline is idle is shown in Figure 3.

As a general note, the needs of the scenario studied drove the modeling of the on-
tologies. Most of the choices of what to include and what to exclude were based on the
need of the information in executing the chosen scenario. A broader study might need
to revisit the ontologies and generalize end expand them.

The agents use different parts of the combined® case study ontology. The Workout
Monitor agent understands Workout and Person ontologies, the SuperTux agent under-
stands all ontologies, the Telephony Observer agent understands OperatorAccount and
Person ontologies, and the Mood Renderer understands Game and OperatorAccount
ontologies.

SuperTux, Mood renderer, SuperTux,
Telephony status observer Mood renderer
OperatorAccount Game

m3:sessionstart
m3:sessionend
m3:lives

m3:phonelinestatus

m3:mobileaccoun m3:player

SuperTux, Workol
Al monitor

m3:user
Workout

m3:totaldistance
ma3:username m3:totaltime
m3:stoptime
m3:username
m3:starttime

Person

Fig.2. An informal description of used ontologies. The using agents are named on top of the
“class” box

Person The person ontology describes the information about a person necessary for
this case study. A person can have a name (m3:username) and an operator account
(m3:mobileaccount).

3 A combination of Person, OperatorAccount, Game, and Workout ontologies

m3:person

m3:workout
m3:supertux rdf:type

N rdftype 2008-10-29T07:02:30"
71 ma3:user i
rdf:type m3:player ma3:starttime
m3:usefname ?3we
72 "2008-10-297T08:05:12"

3 onst "SportsTrackerUser" 3:totaldist
m3:sessionstar i m3:totaldistance
m3tlives m3:totaltim
ugn m3:mobileaccount "2053132"

"3738786"
24
df:type
m3:phonfiy5@15 \%\

“idle" ma3:operatoraccount

"2008-10-30T11:30:02"

Fig. 3. An example RDF graph during the execution of scenario

Operator Account The operator account ontology contains information about the
phoneline status of the account. In a more realistic case, there could also be information
about the phone number, used talking time, amount of data transferred etc.

Workout The workout ontology describes a generic distance-oriented workout. Thus,
we include information about the length of the workout, distance traveled, person who
has done the workout etc. but no information related to, for example, weightlifting
where we probably would like to know the number of repeats and weights instead of
time used and distance. The choice of what to include in the ontology was influenced
by the information available in the SportsTracker application.

Game The Supertux game ontology includes information about the gaming session
start time, stop time, lives left and player. The session start is defined to be the time
when the game executable was started, showing a welcome screen. The lives value is
inserted when a player starts a game, new or saved, from the welcome screen. When
the player quits the game completely, that is, exits the welcome screen, the session stop
time is inserted.

The ontology could include also information about current score, amount of coins,
field being played etc. which the mood renderer could use.

3.3 Agents

Next we describe the operation of agents making up the case study. It should be noted
that the agents are only communicating implicitly through the M3 space by reading the
information inserted to it by other agents.

Workout Monitor The workout monitor reads SportsTracker workout files and writes
a summary of the workouts to M3 space. We currently read the information related to

general description of the workout and insert that in the M3 space. Any path information
is ignored as we have no use for it in the current scenarios.

The workout information is related to the person doing the workouts. If a person
with same name as the SportsTracker username is found, we attach the workout in
question to that person, otherwise we create a new person.

We use an SportsTracker internal workout identifier to identify workouts so that
we do not insert duplicate workouts if the monitor is run again with same workouts as
before.

Supertux Supertux is a classic jump’n’run sidescroller game which has taken strong
inspiration from the original SuperMario games for Nintendo. Supertux is open source
and available under GPL.

The ontologies related to Supertux game are the Person ontology, the Workout on-
tology and the Supertux ontology. Each Supertux game is assigned with player infor-
mation. If the person class instance of the player can not be found from the M3 space
the game creates one and inserts player information according to the Person ontology.
The person class instance also binds the player to the workout information inserted to
the M3 space. Prior starting the game supertux queries workout information from the
M3 space. The first query searches for all instances of the Workout class. For each
found workout class instance a new query is performed in order to find out the details
of the workout. If there are long and recent enough workouts performed by the player
the game awards two extra lives to a game level.

The game creates also an instance of itself and inserts information such as refer-
ence to the person class of the player, session start and stop time to the M3 space. In
addition, the game updates how many lives the player has left during playing a game
level. Every time the player looses or gains one life in the game, the game removes old
1livesinformation and inserts the new information to the M3 space.

Telephony status observer The telephony voice line status is part of a OperatorAc-
count class. Operator accounts are bound to a person i.e. it is assumed that each account
belongs to a person*. The voice line status only has two states, namely active and
idle. The phone line status monitor subscribes to voice line status changes provided
by Symbian’s CTelephony API. When the user dials a phone number to establish voice
connection or when there is incoming call to the phone, CTelephony API provides the
current voice line status to the observer application. The observer application transforms
the CTelephony states (e.g. EStatusRinging, EStatusDialling, EStatusldle, .. .) to corre-
sponding values defined by the OperatorAccount ontology and updates the information
to the M3 space.

Mood renderer A mood renderer conceptually would have interfaces to sensory, i.e.
mood rendering devices of a smart space invironment in order to cooridinate their con-
trols according to a mood determined by its knowlege processing. The questions would
be many about such knowlege for determing a mood and how to render it for a given

* or a group of persons—we do not prevent that

environment. The mood renderer of the case study is a very simple start on the prob-
lem, which side-steps many issues for practical cases, while showing the essence of
knowlege processing for the given concept.

The mood renderer in this case study is based on music as the only rendering device,
and thus, the simple assumption that music, more precisely some audio track, maps to
a determinable mood, and still further, that the mapping stems solely from the state of
a partical game being played and applies invariently with regard to time. This dodges
questions about personal tastes and more than one person contributing to the smart
space mood.

In choosing a track to play, volume is not controlled, but play, pause and stop are
used where appropriate. Mood rendering is based solely on two sources of information
in the smart space environment. The first is an operating supertux game and the second
is phone status. Note then, that this mood renderer is solely reactive to information
about a dynamic smart space environment to which it belongs—for simplicity, it does
not contribute information even though it clearly impacts it.

Given the simplifications stated, and that the mood renderer understands the ontolo-
gies of the supertux game and telephony status observer. It follows their two indepen-
dent contributions to the smart space environment and combines them to render a mood
appropriate for the state of game play, while maintaining the courtesy of pausing an
audio track, if being played while any phone status of the smart space is active.

The mood renderer is implemented as two persistent queries for smart space infor-
mation. The first is looking for an active game in order to render its mood, and the sec-
ond is looking for any phone with an active status. When an active game is found, a third
persistent query, particular to this game, looks for its level of m3:1ives and renders
a mood as CALM, for no lives before the real play starts, and then when m3:1ives
exist, either “UP-BEAT” or “DOWN-BEAT” according to a threshold configuration on
the number of lives. When the game ends, audio rendering is stopped.

The mood renderer’s behavior can be described as follows:

— Start with renderer.setTrack (NONE), renderer.setMode (STOP),
and gameSelected=FALSE.

— Subscribe to the call-status attribute for all phone-status-observers. Monitor sub-
scription results, for any attibute value of “active”, if currentMode is PLAY, then
do renderer.setMode (PAUSE); otherwise, if currentMode is PAUSE,
dorenderer.setMode (PLAY) ie.any playing pauses during any phone call,
or resumes when no phone call if paused during a game.

— Subscribe to a supertux game, which has a session-start and no session-end, or
session-start after session-end. Monitor subscription results, and, whenever ful-
filled, first ensure that rendering is stopped and end subscriptions for any earlier
game. Then render music/mood mapping for the selected game using the next sub-
scription.

— Subscribe to session-end and lives attributes of the selected game. When fulfilled,
set renderer.setMood (mood), for mood according to lives as follows:

e 1o lives: CALM i.e. game started, but not yet played.
e lives above threshold: UP-BEAT
e below threshold: DOWN-BEAT

When session-end of game is after session-start, stop rendering and end subscrip-
tions about this game.

4 Conclusions

The idea of agents interoperating by communicating implicitly through M3 spaces
worked well for this case study. We were able to execute the scenario in mind and
add the phone agent to it without modifying the existing ontology. However, this work
was performed inside a single team in a single company. This kind of close cooperation
between people implementing the agents obviously makes things easier.

Most of the work required in integrating the different agents into a coherent sce-
nario was related to the mood renderer observing the state of the SuperTux game. The
ontology did not directly provide information about all the state changes in the game.
For example, when starting to play a level in the game, the mood renderer deduce this
by observing the appearance of the 1ives attribute in the M3 space. This is however
something that will probably be a very common case as the ontologies can not and
should not try to describe all possible information that some agent may need. It should
suffice that the information is deducible from the explicitly stated information.

Another aspect of local pervasive computing environments that was not really ad-
dressed in this case study was the handling of resources that can only be used by one
agent at a time. In this case the mood renderer represents such resource (audio player),
and implicitly it is usually the game that uses it as the mood renderer deduces the mood
based on the game state alone. When the phone rings, the mood renderer will stop the
music and continue after the call is finished. However, in a more complex case there
needs to be (preferably) clear policy for each resource on who can use it. We currently
think that this can be handled at the ontology level, with suitable coordination structures
and an agent acting as a gatekeeper. In general, this is however a subject for further
study.

The basic principles of agent-dependent interpretation of information and implicit
communication proved useful when the phoneline status information was added to the
case study. When we only describe the information and not the actions to be taken by the
agents, the agent can select suitable course of action based on the detailed knowledge
of the agent in question. In this particular case, the correct course of action for the
SuperTux game is to pause when the phoneline is active but not automatically resume
the game when it goes idle, as the player is not necessarly ready to continue immediately
after ending the call. On the other hand, the mood renderer should continue playing the
music immediately after the distraction (in this case call) has ended.

If we expanded the case study with more persons with each having mobile phones,
the difference with mood renderer and SuperTux regarding the behavior when a call
arrives would be even more. Sensible behavior for mood renderer would be to stop the
music whenever anyone in the same (acoustic) location receives a call, while the game
should only react to calls to the player of the game.

Of course, in some cases it might be desirable to have coordinated response from
a group of agents to certain events. We believe that this is best handled outside the
system, by e.g. requirements in the scenario descriptions or ontology documentation.

Anyhow, such coordinated responses would not apply to all agents but rather to only
certain groups of agents involved in executing a given scenario.

An obvious next step related to the interoperability hypothesis is to have external
research partners extend the demo with agents implemented outside Nokia. This would
clarify the required level of ontology and agent behavior description as the communi-
cation would then approximate more the real world case where the agents would be
implemented by multiple vendors.

5 Acknowledgements

The authors would like to thank Vesa Luukkala for helping with ontology modeling,
and Antti Lappeteldinen for helpful comments.

References

1. S. Bergamaschi, S. Castano, and M. Vincini. Semantic Integration of Semi-structured and
Structured Data Sources. SIGMOD Record, 28(1):54-59, March 1999.

2. Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific American,
May 2001.

3. H. Foster, S. Uchitel, J. Magee, and J. Kramer. Compatibility verification for web service
choreography. In Proceedings of IEEE International Conference on Web Services, July 69
2004, pages 738-741. IEEE, 2004.

4. Eric Freeman, Susanne Hupfer, and Ken Arnold. JavaSpaces Principles, Patterns and Prac-
tice. Addison-Wesley, 1999.

5. Daniela E. Herlea, Catholijn M. Jonker, Jan Treur, and Niek J. E. Wijngaards. Multi-Agent
System Engineering, volume 1647 of LNCS, chapter Specification of Bahavioural Require-
ments within Compositional Multi-agent System Design, pages 8—27. Springer, 1999.

6. Grace A. Lewis, Edwin Morris, Soumya Simanta, and Lutz Wrage. Why Standards Are
Not Enough To Guarantee End-to-End Interoperability. In Proceedings of 7th IEEE Inter-
national Conference on Composition-Based Software Systems (ICCBSS), February 25-29
2008, Madrid, Spain. IEEE, 2008.

7. Network on terminal architecture. http://www.notaworld.org, 11 2008.

8. Ian Oliver and Jukka Honkola. Personal Semantic Web Through A Space Based Computing
Environment. In Second IEEE Interntional Conference on Semantic Computing, August 47,
2008, Santa Clara, CA, USA. IEEE, 2008.

9. Web ontology language. http://www.w3.0rg/2004/OWL/.

10. Resource description framework. http://www.w3.org/RDF/.

11. Kia Teymourian, Lyndon Nixon, Daniel Wutke, Reto Krummenacher, Hans Moritsch, Eva
Khn, and Christian Schreiber. Implementation of a novel semantic web middleware approach
based on triplespaces. In Second IEEE International Conference on Semantc Computing,
August 4-7, 2008, Santa Clara, CA, USA, pages 518-523. IEEE, 2008.

