	Copyright ©

Nokia Corporation, 2009
	Nokia Research Center

Smart-M3
	Smart-M3 Setup Guide

V 0.9.4

1(12)

Smart-M3 SETUP GUIDE

TABLE OF CONTENTS

1. Introduction
3
2. Modules
3
2.1 KP modules
3
2.2 SIB modules
3
3. Pre-requisities
3
3.1 Compiler and autotools
4
3.2 D-Bus runtimes, libraries and development headers
4
3.3 Expat library and development headers
4
3.4 Uuid runtimes, library and development headers
4
3.5 NoTA runtimes, libraries and development headers
4
3.6 Avahi runtimes, libraries and development headers
4
3.7 Python
4
3.8 Qt
4
4. Building
5
4.1 Build order
5
4.2 Build KP side modules
5
4.2.1 Building libwhiteboard
5
4.2.2 Building whiteboard daemon
5
4.2.3 Building sib-access
6
4.2.4 Building sib-access-nota
6
4.2.5 Installing the python KP library
7
4.3 Building SIB side modules
8
4.3.1 Building Piglet
8
4.3.2 Building SIB daemon
8
4.3.3 Building sib-tcp
8
4.3.4 Building sib-nota
9
4.4 Building Smart-M3 Qt Core and Advanced APIs
9
4.5 Common problems
9
5. Knowledge processor development
10
5.1 GLib based KP
10
5.2 Qt based KP
10
5.3 Python based KP
10
6. Running the environment
10
6.1 Running SIB
10
6.2 Running KP
11
6.2.1 Qt and GLib based KPs
11
6.2.2 Python KPs
11
6.3 Running NoTA environment
11

1. Introduction

This document describes how to compile and install Smart-M3 software on a Linux based platform. Currently the Smart-M3 software modules have been tested on Ubuntu Linux and Maemo platform. Section 2 describes different Smart-M3 modules, Section 3 elaborates software dependencies and Section 4 descibes how to compile and install different modules. This document assumes that reader is understands roles if different modules. Read first the “Smart-M3 Software Architecture” document.

2. Modules

The Smart-M3 platform consists of the modules listed in Table 1. The libwhiteboard is required by all other modules except Piglet. Second column in the Table means whether to module is related to Knowledge Processors (KP) or Semantic Information Broker (SIB).

Table 1: Different Smart-M3 modules.

	Module name
	
	Mandatory/Optional

	Libwhiteboard
	SIB+KP
	Mandatory

	Whiteboard-daemon
	KP
	Mandatory (if running KPs)

	Sib-access
	KP
	Optional

	Sib-access-nota
	KP
	Optional

	Sib-access-plain-nota
	KP
	Optional

	Smart-M3 Qt core
	KP
	Optional

	Sib-daemon
	SIB
	Mandatory (if running SIB)

	Sib-tcp
	SIB
	Optional

	Sib-nota
	SIB
	Optional

	Sib-plain-nota
	SIB
	Optional

	Piglet
	SIB
	Mandatory (if running SIB)

	Python KP
	KP
	Optional

2.1 KP modules

The libwhiteboard provides utility functions for all other modules and, hence, is required by all other modules except Python KP. The whiteboard-daemon module must be running in the background so it required by all modules if running any KP. Currently there are three transport level modules, namely sib-access, sib-access-nota and sib-access-plain-nota. The system designer must select at least one of the transport modules depending on the transport selection.

Additionally the user can choose to install Smart-M3 Qt API. The Smart-M3 Qt Core module provides Qt APIs for SmartSpace discovery and basic transactions.

The Python KP module has no requirements to the other modules.

2.2 SIB modules

If the system designer wishes to run SIB, he/she requires sib-daemon module and one or more SIB side transport modules. Currently available SIB side transport modules are sib-tcp, sib-nota and sib-plain-nota.

3. Pre-requisities

Following packages need to be installed on the development environment before Smart-M3 can be compiled (package names refer to Ubuntu/Maemo apt-get installation package manager).

3.1 Compiler and autotools

In order to compile different Smart-M3 modules, the C compiler is required. In addition, Piglet requires C++ compiler. To install compilers, install build-essential package.

autotools-dev, automake, autoconf, libtool

3.2 D-Bus runtimes, libraries and development headers

dbus, libdbus-1-3, dbus-x11, libdbus-1-dev, libdbus-glib-1-dev

3.3 Expat library and development headers

libexpat1, libexpat1-dev

3.4 Uuid runtimes, library and development headers

uuid-runtime, libuuid1, uuid-dev

3.5 NoTA runtimes, libraries and development headers

libnotal_in-3.0, libnotah_in-3.0, libstubadapter-h_in3 (*), nota-stubgen (*)

(NoTA resource manager)

NoTA packages are not available through any Linux package manager. One needs to get the sources from http://www.notaworld.org and build packages manually.

Note: NoTA is required only by modules sib-access-nota and sib-nota i.e. NoTA libraries are not required if using only TCP/IP transport processes. (*) Stubadapter library and stubgen packages are required by sib-nota and sib-acces-nota packages. Plain-nota versions do not need stubadapger or stubgen.

3.6 Avahi runtimes, libraries and development headers

avahi-daemon, libavahi-client3, libavahi-glib1, libavahi-gobject0

libavahi-client-dev, libavahi-glib-dev, libavahi-gobject-dev

Note: Avahi libraries are currently used only by sib-access module, and it’s counter part in SIB side does not yet support Avahi.

3.7 Python

python2.6 or python2.5, python-dev

Note: Python is required by sib-daemon module and python KP libraries. Hence, it is not necessary if SIB is not installed and python KP libraries are not used. Also, if sib-daemon is built with --enable-wql=no configure option, Python is not required for SIB. However, this will also disable all WQL queries from the SIB.

3.8 Qt

If you wish to use Smart-M3 Qt APIs you need also Qt4.5 or later development environment set up to your computer. Install qt4-dev-tools, libqt4-dev. Also qt-creator, which is a powerful graphical IDE for Qt developers, is suggested.

4. Building

4.1 Build order

Different Smart-M3 modules depend on each other, so it is important that they are built in correct order. The build order for KP side is as follows:

1. libwhiteboard

2. whiteboard daemon

3. At least one of KP side transport modules: sib-access, sib-access-nota, sib-access-plain-nota.

4. Smart-M3 Qt Core

The build order for SIB side is as follows:

1. libwhiteboard

2. Piglet

3. SIB daemon

4. At least one of SIB side transport modules,sib-tcp, sib-nota, sib-plain-nota.

4.2 Build KP side modules

4.2.1 Building libwhiteboard

Type the following commands in a terminal window to compile and install libwhiteboard:

> tar xzvf libwhiteboard-<version>.tar.gz

> cd libwhiteboard-<version>

> ./autogen.sh

> ./configure

> make

> sudo make install

Commonly used options for configure script:

	Option
	Description

	--with-debug
	Enable debug log messages. Default = no.

	--with-ssaprole=kp/sib/both
	Whether to compile message parsing and generation functions for SIB, KP or both roles. Default=both.

4.2.2 Building whiteboard daemon

Type the following commands in a terminal window to compile and install whiteboard daemon:

> tar xzvf whiteboardd-<version>.tar.gz

> cd whiteboardd-<version>

> ./autogen.sh

> ./configure

> make

> sudo make install

Commonly used options for configure script:

	Option
	Description

	--with-debug
	Enable debug log messages. Default = no.

	--enable-sib-access-startup=yes/no
	Configure whether whiteboard daemon starts all sib-access modules installed to location ${prefix}/lib/whiteboard/libexec. Default = yes.

4.2.3 Building sib-access

First decide SmartSpace discovery method. Available methods are Avahi mDNS and hard coded static IP address. In case of static IP address, only one SmartSpace is supported. If static IP address is selected, extract the sources using tar command as shown below and edit source file src/sib_controller.c. The IP address of the SmartSpace is selected by defines:

#define SIB_IP “127.0.0.1”

#define SIB_PORT 10010

Edit the values you wish to use to the source file.

If Avahi mDNS is chosen for discovery method, give --enable-avahi=yes parameter to the configure script.

Type the following commands in a terminal window to compile and install sib-access:

> tar xzvf whiteboard-sib-access-<version>.tar.gz

> cd whiteboard-sib-access-<version>

> ./autogen.sh

> ./configure

> make

> sudo make install

Commonly used options for configure script:

	Option
	Description

	--with-debug
	Enable debug log messages. Default = no.

	--enable-avahi=yes/no
	Enable Avahi service discovery method. Default = no.

4.2.4 Building sib-access-nota

First decide SmartSpace discovery method. Available methods are NoTA Resource manager and hard coded static Service IDs. In case of static SID address, only one SmartSpace is supported. If static SID is selected, extract the sources using tar command as shown below and edit source file src/sib_controller.c. The Service ID of the SmartSpace is selected by a define:

#define TEST_SID 33

Edit the values you wish to use to the source file and give --enable-rm=no parameter to the configure script.

If NoTA Resource manager is chosen for discovery method, no actions are required.

Type the following commands in a terminal window to compile and install sib-access-nota:

> tar xzvf whiteboard-sib-access-nota<version>.tar.gz

> cd whiteboard-sib-access-nota<version>

> ./autogen.sh

> ./configure

> make

> sudo make install

Commonly used options for configure script:

	Option
	Description

	--with-debug
	Enable debug log messages. Default = no.

	--enable-rm=yes/no
	Enable NoTA Resource manager service discovery method. Default = yes.

	--with-hin-sp=yes/no
	Link against NoTA H_IN single process library. Default = no.

4.2.5 Building sib-access-plain-nota

Sib-access-plain-nota supports only static SID. It is configure in file src/sib_access.c

#define SID_M3SIB 10

Type the following commands in a terminal window to compile and install sib-access-plain-nota:

> tar xzvf whiteboard-sib-access-plain-nota<version>.tar.gz

> cd whiteboard-sib-access-plain-nota<version>

> ./autogen.sh

> ./configure

> make

> sudo make install

Commonly used options for configure script:

	Option
	Description

	--with-debug
	Enable debug log messages. Default = no.

	--with-hin-sp=yes/no
	Link against NoTA H_IN single process library. Default = no.

4.2.6 Installing the python KP library

Unpack the smart-m3_pythonKP package to some temporary directory. Then type

> python setup.py install

to install the necessary files to standard python directories. The files will be located in smart_m3/ directory in the python package directory. The following files will be installed:

· m3_kp.py: provides the KP API

· Node.py: older KP API, included for backwards compatibility. Should not be used in new programs.

· discovery.py: discovery functionality used by m3_kp.py and Node.py

Note: Existing KPs that use the Node.py will need to replace the “import Node” statement with “from smart_m3 import Node”, and (other possibility) “from Node import *” with “from smart_m3.Node import *”

4.3 Building SIB side modules

4.3.1 Building Piglet

Type the following commands in a terminal window to compile and install Piglet

> tar xzvf m3_piglet_<version>.tar.gz

> cd m3_piglet_<version>

> make

> sudo make install

> sudo ldconfig

4.3.2 Building SIB daemon

Type the following commands in a terminal window to compile and install SIB daemon:

> tar xzvf sibd-<version>.tar.gz

> cd sibd-<version>

> ./autogen.sh

> ./configure

> make

> sudo make install

Commonly used options for configure script:

	Option
	Description

	--with-debug
	Enable debug log messages. Default = no.

	--enable-wql=yes/no
	Enable WQL query types. If WQL queries are enabled Python is required too. Default = yes.

4.3.3 Building sib-tcp

Currently sib-tcp does not support Avahi mDNS service discovery.

Type the following commands in a terminal window to compile and install sib-tcp:

> tar xzvf sib-tcp-<version>.tar.gz

> cd sib-tcp-<version>

> ./autogen.sh

> ./configure

> make

> sudo make install

Commonly used options for configure script:

	Option
	Description

	--with-debug
	Enable debug log messages. Default = no.

4.3.4 Building sib-plain-nota

Type the following commands in a terminal window to compile and install sib-plain-nota:

> tar xzvf sib-plain-nota<version>.tar.gz

> cd sib-plain-nota<version>

> ./autogen.sh

> ./configure

> make

> sudo make install

Commonly used options for configure script:

	Option
	Description

	--with-debug
	Enable debug log messages. Default = no.

	--with-hin-sp=yes/no
	Link against NoTA H_IN single process library. Default = no.

4.4 Building Smart-M3 Qt Core API

Smart-M3 Qt Core API depends on the libwhiteboard library and also uses the KP infrastructure. Thus all KP side Smart-M3 modules need to be installed prior building Smart-M3 Qt Core library.

Type the following command in a terminal window to compile Smart-M3 Qt Core modules as well as the test application.

> tar xzvf libwhiteboard_qt4_<version>.tar.gz

> cd libwhiteboard_qt4_<version>

> qmake

> make

> sudo make install

The make command will compile and install the core API into /usr/local/lib directory and copy the header files to /usr/local/include/whiteboard/qt-core directory. If you want different installation location, edit LIBRARY_INSTALL and HEADER_INSTALL variables from libwhiteboard_qt4_<version>/src/src.pro file. Make the corresponding edits to INCLUDEPATH and LIBS variables of libwhiteboard_qt4_<version>/src/app.pro file. The test applications are installed into libwhiteboard-qt4-<version>/app subdirectory.

4.5 Common problems

· If you specify --prefix=/your/path to configure, use same prefix for all modules

· Default value for prefix is /usr/local

· configure complains about missing libwhiteboard.pc

· Make sure that [prefix]/lib/pkgconfig is included in PKG_CONFIG_PATH environment variable

· Libwhiteboard-2.0-beta0.so not found when running daemon or whiteboard-sib-access

· Make sure that [prefix]/lib is included in LD_LIBRARY_PATH environment variable

5. Knowledge processor development

KP DEVELOPMENT SECTION TO BE ADDED

5.1 GLib based KP

5.2 Qt based KP

5.3 Python based KP

6. Running the environment

6.1 Running SIB

The actual RDF store is managed by sib-daemon and its content is stored permantly to a database file named “$PIGLET_HOME/X” where PIGLET_HOME is a user set environmental variable. If PIGLET_HOME is not set, then user’s home directory (from HOME environment variable) is used, and if HOME is not set, the database file is stored in /tmp. The RDF content is read from the file database file during start-up of the the sib-daemon and if empty database is desired after start-up, the database file should be removed.

Currently sib-daemon does not start its transport processes and user is required to launch them manually. To run SIB environment open on terminal window for sib-daemon and one terminal window for each transport process.

Terminal 1 (Sib-daemon)

export PIGLET_HOME=”/path/to/database/”

rm $PIGLET_HOME/X

sibd

Terminal 2 (sib-tcp)

sib-tcp

Terminal 3 (sib-nota)

sib-nota

Sib-tcp provides TCP/IP connectivity to the SIB and sib-nota provides NoTA connectivity to the SIB. You can run either of them or both at the same. If you are using sib-nota, make sure you have NoTA environment and NoTA resource manager (RM) running prior launching sib-nota. NoTA resource manager is not required if enabled RM has been disabled with “--enable-rm=no” configure option when building the sib-nota module. See Section 6.3 how to run NoTA.

6.2 Running KP

6.2.1 Qt and GLib based KPs

Prior running any KP application that uses GLib based SmartSpace access via libwhiteboard whiteboard daemon (whiteboardd) must be running. Smart-M3 Qt Core and Advanced APIs also communicate with the whiteboard daemon, so whiteboard daemon must be running prior launching KP applications accessing SmartSpace via either of them.

After installing KP side transport processes (sib-access, sib-access-nota or both of them) give following command in a terminal:

Terminal: (whiteboard daemon)

whiteboardd

The whiteboard daemon starts the installed transport processes (if not disabled by --enable-sib-access-startup=no configure option). If you are using sib-access-nota, make sure the NoTA environment is running prior starting whiteboard daemon.

After the whiteboard daemon has been started the KP applications can be started.

6.2.2 Python KPs

KP applications written on top of Python-KP package do not use whiteboard daemon at all. They communicate directly with SIB over TCP/IP. To allow Python KPs to connect, there must be sib-tcp transport process running in the SIB side.

6.3 Running NoTA environment

There are two components using NoTA in Smart-M3, namely sib-access-nota and sib-nota. The former is KP side transport process and the latter is SIB side transport process and they communicate with each others. Both of them assume that there is NoTA H_IN daemon running in the device. Following instructions assume that the NoTA network is not used by any other purpose than Smart-M3. If NoTA is used for some other purposes as well it potentially has to be configured differently.

There has to be exactly one NoTA manager node running in the network. In these instructions the NoTA manager node is running on the same device than the SIB is running, but it does not necessarily have to be the same device. If the SIB and KP modules are running in the same device, Terminal 3 is not required as they both communicate with same NoTA H_IN daemon.

Terminal 1 (NoTA H_IN daemon, manager mode - in SIB device)

nota-ind -m

Terminal 2 (NoTA RM - in SIB side)

nota-rmsvc

Terminal 3 (NoTA H_IN daemon - in KP device)

nota-ind

