
FRUCT Training 
2016-06-11 St. Petersburg



Biography
• Vesa-Matti ”Vesku” Hartikainen

• Program Manager at Jolla. 

• Daily management of Sailfish OS development

• Overall planning of R&D and customer delivery projects

• Twitter: @veskuh

• Background

• Joined Jolla 2012 as Engineer developing UI and apps

• Lead Sailfish Browser development 2012-2014

• At Nokia 2007-2012 working as developer and project 
manager in Maemo, and MeeGo.



Devices running Sailfish OS











Turing Phone



Community Ports



Community ports

HW adaptation separate from the platform

• HW adaptation is based on Linux and use of 
libhybris to utilize Android HW adaptation

• Many active community ports using the 
Hardware Adaptation Development Kit 
(HADK) provided by Jolla.

• HADK: https://sailfishos.org/develop/hadk/

https://sailfishos.org/develop/hadk/




Sailfish OS

• Modern Linux based operating system

• Continuos improvement with 14 
software updates so far

• Adaptable for multiple form factors and 
screen sizes

• Many devices supporting Sailfish 
already exits and more are coming from 
Sailfish partners and active community 



HW adaptation separate from the platform

Sailfish OS architecture



Sailfish OS core

• Sailfish utilizes Mer-project as 
Core OS

• On top of Mer-core Sailfish OS 
adds UI components for QML 
and core User experience 
(homescreen, lockscreen, etc.)

• Qt framework is utilized heavily 
on the UIHW adaptation separate from the platform



Sailfish UI

• Modern touch based UI with fluid 
transitions, gestures, haptic and sound 
effects

• All User Interfaces written in QML. Qt / C++ 
used for providing data (models) for UI 
views

• Main difference to traditional Linux 
desktops is use of Wayland instead of X 
Windowing system

• Gecko browser engine - Sailfish Browser is 
open source

• QtWebkit for web views



Lipstick framework

• Lipstick is a framework for creating mobile device user experience: Lockscreen, 
home screen, compositor, notifications, status indicators

• Sailfish builds its own QML based system UI using Lipstick framework

• The Lipstick Compositor manages all displayed windows. It uses QtWayland to 
manage displayed surfaces. It also handles screen orientation changes and turning 
the display on/off.

• The compositor also manages the layering of special window types such as the 
Lock screen, system windows and alarm-notification windows. It also implements 
the core system swipe gesture capabilities



Sailfish Silica

• Sailfish Silica is a set of QML UI components and utilities for styling applications and managing application behaviour.

• Sailfish applications are apps are written through a combination of QML and C++, where the UI is built using Silica and 
launched from a C++ application by embedding the main QML file in a QQuickView.

• QML is a declarative language provided by the Qt framework that makes it easy to create modern user interfaces . QML-
based user interfaces can be connected to a C++ based application back-end that implements more complex application 
functionality or accesses the native libraries.

• Qt framework includes the QtQuick module, which contains essential types for creating QML, the Sailfish Silica module 
provides additional types specifically designed for use by Sailfish applications. 

• The Sailfish Silica module makes it easy to write user interfaces that:

• have a Sailfish look and feel

• behave consistently with standard Sailfish applications

• make use of unique Sailfish features, such as pulley menus and application covers

• Current Sailfish Silica is based on Qt 5.2 and QtQuick 2, but work is on-going to update Qt to newer version

• Sailfish Silica API Reference: https://sailfishos.org/develop/docs/silica/

https://sailfishos.org/develop/docs/silica/


UX

• Gestures

• Edge gestures

• Pulley menus

• Peek

• Double tap to unlock

• Feedback

• Haptic

• Sounds

• One handed use

• Ambience

• Mood

• Device mode



Gestures

Edge swipes Pull down for menu Flick to navigate back Long tap for context menu





Sailfish OS 2.0



Jolla Store

• Reviewed applications

• Set of accepted APIs can be used

• Packaging and behavior needs to follow defined set 
of guidelines

• Harbour - The developer portal for app intake 

• Includes applications both native and Android from 
3rd parties, apps from Jolla, and apps from Jolla’s 
partners



3rd party app guidelines

• Harbour FAQ has up-to-date rules: https://harbour.jolla.com/faq

• SDK includes rpm validation script to check that application packaging follows the 
rules

• Qt C++/QML apps are the default, but additionally Python is supported and known 
cases of Golang apps have been approved

https://harbour.jolla.com/faq


Working with Open Source

• Most components under open source are found from Mer-project

• Mer -project’s wiki and IRC channel help get started: 
https://wiki.merproject.org/

• Source repostiories: https://git.merproject.org/explore

• Some of the Sailfish specific open source components like Sailfish Browser are at 
https://github.com/sailfishos

• As a rule of thumb: read the docs first and if you don’t still know something then go 
to IRC and ask

https://wiki.maemo.org/
https://git.merproject.org/explore
https://github.com/sailfishos


Feedback

• Feature request, bugs, improvement ideas: http://together.jolla.com/

• Developer mailing list: https://lists.sailfishos.org/cgi-bin/mailman/listinfo/devel

• IRC channels #sailfishos and #mer at freenode

• And more: https://sailfishos.org/community/

http://together.jolla.com/
https://lists.sailfishos.org/cgi-bin/mailman/listinfo/devel
http://webchat.freenode.net/?channels=sailfishos
http://webchat.freenode.net/?channels=sailfishos
https://sailfishos.org/community/

