
Code-generator of parallel assembly
code for digital signal processor

Bukharenko Nikita

Problems

• The necessity of developing programs on low-
level language (assembler)

• Getting an inefficient code after translating program
from C/C++ to assembly language

• The necessity of
manual parallelization of
assembly code

2

Approach to the solution
The scheme - is the natural representation of the digital
signal processing problem
• There is no need to represent it in text form
• The scheme naturally shows the parallelism

3

The purpose

Code-generator of parallel assembly code according to
the scheme of objects for microprocessor’s DSP-core

4

Tasks

• Targeting to different instruction sets

• Generating parallel and sequential code (single-
threaded cores only)

• Optimization of registers and memory work

5

Scheme

The scheme of the code-generator’s
environment

Scheduler

Intermediate
representation

The schedule
of objects

implementation

Templates of
processor’s
instructions

Code-generator
Assembly code for

DSP-core

6

Scheme

The scheme of the code-generator’s
environment

Scheduler

Intermediate
representation

The schedule
of objects

implementation

Templates of
processor’s
instructions

Code-generator
Assembly code for

DSP-core

Code generator supports
the scheme with such operators :

6

Scheduler

Scheme

The scheme of the code-generator’s
environment

Intermediate
representation

The schedule
of objects

implementation

Templates of
processor’s
instructions

Code-generator
Assembly code for

DSP-core

(1) (2) (3) (5) (6)

6

Templates of
processor’s
instructions

Scheduler

Scheme

The scheme of the code-generator’s
environment

Intermediate
representation

The schedule
of objects

implementation

Code-generator
Assembly code for

DSP-core

An example of multiplication’s
template for DSP-core:

An example of subtraction’s
template for DSP-core:

entity llmul [dsp2] is

mpss ®in1,®in2,®out1

entity llmul end.

entity llsub [dsp1] is

sub ®inx1,®iny1,®out1

entity llsub end.

6

Templates of
processor’s
instructions

Scheduler

Scheme

The scheme of the code-generator’s
environment

Intermediate
representation

The schedule
of objects

implementation

Code-generator
Assembly code for

DSP-core

6

Optimization

The main directions in the optimization of the output
code:

• Optimization of memory usage(to minimize memory
access)

• Optimization of general purpose registers usage
(economical usage of a limited set of registers)

7

An example of code-generator’s work
for DSP-core

Scheme Generated code
move 0x1,R2
move 0x4,R4
move 0x00000008,R6
move 0x2,R8
move 0x5,R10
add R2,R8,R12
move 0x1,R2
do R12,label_cycle_1003
mpss R10,R2,R8 add R2,R4,R14
move R8,R10
move R14,R4

label_cycle_1003:
inc R2,R2
sub R4,R10,R8
move R6,A0
move R8,(A0) Result: 0х14

8

for

An example of code-generator’s work
for RISC-core

Scheme Generated code
li $2,0x1
li $3,0x4
li $4,0x00000008
li $5,0x2
li $6,0x5
add $7,$2,$5
li $2,0x1
add $7,$7,0x1

label_cycle_1003:
beq $7,$2,label_finish_1003
nop
mul $5,$6,$2
add $8,$2,$3
add $6,$5,0x0
add $3,$8,0x0
add $2,$2,0x1
j label_cycle_1003
nop

label_finish_1003:
sub $5,$6,$3
sw $5,0($4)

Result: 0х14
9

for

Resume
• Visual scheme instead of text code

• Explicit parallelism at the level of the scheme

• An efficient parallel assembly code

• Targeting to different processors and instruction
sets

10

Thank you for your attention!

11

