Interactive Metro Map for
Moscow and St.-Petersburg

Nikita Karpinsky, Evgeny Linsky
and Alexander Malakhov

State University of Aerospace Instrumentation
(SUAI lab)

Problem statement

MeeGo and Symbian”1 support
Map dragging and scaling implementation
Pinch-to-zoom for MeeGo support

Ul is designhed in QML, program logic is In
C++

Shortest route calculation
Several maps supported

Main problem: fast map rendering

2/9

L N0PYCCHAA

i

MyWKMHCKaA
ApbGaTcKan
1eKCaHaPOBCKMA
B0
bopoBnuUKan

EH

THCK2A

oooCTooU S

LigeTHOW BynLEap

h\{

p

JleHHa

HexnBCKanA

Nnowaab
Peeonrouy

bubanoTeKa MM

TpybGHaa

Typreveeckasn f

(peTeHCKMin ByAbLBap
Ky3HeuKHn MocT

TeatpanteHas
OTHLIM PAQ

Mpocnekr Mn‘

(yxapeecKa

HoBoKy3HeLKas

a»

TpeTeaAKo RS

NonsaHKa

3/9

Rendering map as a single image

Map Is an image loaded in QML.
Flickable {
function recount() {
map.height = default_height * zoom_value;
map.width = default_width * zoom_value;

}
Image {

id: map

source: “spb_map.jpg"
}

}

Dragging Is very slow.
4/9

Rendering map as multitude of
Images

Images replace each other without being

Zzoomed.

Flickable {
function recount() {
map.source = “spb_map_" + zoom_value + “.jpg”;

}
Image {

Id: map

source: “spb_map_1.jpg"
}

}
Scaling Is discrete. 5/9

Rendering map as visible part of
vector graphic

Map is a QDeclarativeltem, only visible
part is rendered.

void paint(QPainter *painter, /*other arguments*/) {
QRectF rect = boundingRect ();
for (int1=0; 1 < edges.count(); ++1) {
If (rect.contains(edges]i].x1, edgesJi].y1) ||
rect.contains(edges]i].x2, edges]i].y2))
painter->drawLine(edges[i].x1, edges]i].y1,
edges|i].x2, edges[i].y2);
}
}

Dragging is very slow. 6/9

Creating QPixmap once for each
map scale

Pixmap Is created for each scale. While
dragging the pixmap is drawn on the
painter.

void createPixmap(){
pixmap = new QPixmap(width, height);
QPainter* painter = new QPainter(pixmap);
/[draw map

}

void paint(QPainter *painter, /*other arguments?*/) {
QRectF rect = boundingRect ();
painter->drawPixmap(rect, *pixmap, rect);

}
Dragging is fast. 7/9

Creating pixmap using Qt SVG

Instead of using drawing functions an SVG
Image Is used.

void createPixmap(){
pixmap = new QPixmap(width, height);
QPainter* painter = new QPainter(pixmap);
QGraphicsSvgltem* svg = new QGraphicsSvgltem(“path”);
svg->paint(painter, option);

}

It works more slowly than previous method.
8/9

Rendering times

(X +Y) means rendering times in QML + rendering times in C++.
Times for QML are very inaccurate.

Method Dragging |Scaling
Single image (10+0)ms (10+0)ms
Multitude of images (4+0)ms (6+0)ms
Visible part is rendered in C++ (3+20)ms (3+20)ms
Creating pixmap for each scale (3+0.5)ms (3+60)ms
Using Qt SVG (3+0.5)ms (3+230)ms

9/9

