
Interactive Metro Map for
Moscow and St.-Petersburg

Nikita Karpinsky, Evgeny Linsky
and Alexander Malakhov

State University of Aerospace Instrumentation
(SUAI lab)

Problem statement

• MeeGo and Symbian^1 support
• Map dragging and scaling implementation
• Pinch-to-zoom for MeeGo support
• UI is designed in QML, program logic is in

C++
• Shortest route calculation
• Several maps supported
Main problem: fast map rendering

2/9

3/9

Rendering map as a single image

Map is an image loaded in QML.
Flickable {

function recount() {
map.height = default_height * zoom_value;
map.width = default_width * zoom_value;

}
Image {

id: map
source: “spb_map.jpg"

}
}

Dragging is very slow.
4/9

Rendering map as multitude of
images

Images replace each other without being
zoomed.

Flickable {
function recount() {

map.source = “spb_map_” + zoom_value + “.jpg”;
}
Image {

id: map
source: “spb_map_1.jpg"

}
}

Scaling is discrete. 5/9

Rendering map as visible part of
vector graphic

Map is a QDeclarativeItem, only visible
part is rendered.

void paint(QPainter *painter, /*other arguments*/) {
QRectF rect = boundingRect ();
for (int i = 0; i < edges.count(); ++i) {

if (rect.contains(edges[i].x1, edges[i].y1) ||
rect.contains(edges[i].x2, edges[i].y2))

painter->drawLine(edges[i].x1, edges[i].y1,
edges[i].x2, edges[i].y2);

}
}

Dragging is very slow. 6/9

Creating QPixmap once for each
map scale

Pixmap is created for each scale. While
dragging the pixmap is drawn on the
painter.

void createPixmap(){
pixmap = new QPixmap(width, height);
QPainter* painter = new QPainter(pixmap);
//draw map

}
void paint(QPainter *painter, /*other arguments*/) {

QRectF rect = boundingRect ();
painter->drawPixmap(rect, *pixmap, rect);

}

Dragging is fast. 7/9

Creating pixmap using Qt SVG

Instead of using drawing functions an SVG
image is used.

void createPixmap(){
pixmap = new QPixmap(width, height);
QPainter* painter = new QPainter(pixmap);
QGraphicsSvgItem* svg = new QGraphicsSvgItem(“path”);
svg->paint(painter, option);

}

It works more slowly than previous method.
8/9

Rendering times
(X + Y) means rendering times in QML + rendering times in C++.
Times for QML are very inaccurate.

9/9

(3+230)ms(3+0.5)msUsing Qt SVG

(3+60)ms(3+0.5)msCreating pixmap for each scale

(3+20)ms(3+20)msVisible part is rendered in C++

(6+0)ms(4+0)msMultitude of images

(10+0)ms(10+0)msSingle image

ScalingDraggingMethod

