11th FRUCT conference in St.Petersburg

Using Drools rule-platform for the optical CAD web application development

Maxim Kolchin, Dmitry Mouromtsev

National Research University of Information Technologies, Mechanics and Optics

1/10

Introduction: the goal

Automation of optical structural synthesis

Structural synthesis is the key-step in the whole optical design process.

Introduction: the structural synthesis

Structural synthesis the procedure of choosing the types, quantities and mutual arrangement of optical elements

2/10

Y1A1P + C1P2P + B2A2P + T2A3P + C3F3F

Introduction: existing approaches

- various catalogues (patents, technical literature etc),
- genetic algorithms,
- own experience,
- expert system this is our way.

Introduction: our approach

Our approach based on rule-based design method of structural synthesis was proposed by M.Russinov and developed by I.Livshits.

> great experience in optical design + expert system technology = automated structural synthesis

Implementation: selection of a rule-platform

Requirements:

- advanced knowledge representation language,
- the support of traditional programming languages,
- the forward chaining,
- tools for knowledge engineering,
- open-source license and an active community.

Rule-platforms: OpenRules, OpenL Tablets, Drools, CLIPS

Implementation: overview of the system architecture

6/10

Here:

- Repository Drools Guvnor,
- Web application the server developed by us,
- Inference engine Drools Expert.

Implementation: algorithm of the inference

Implementation: an example of the rules

8/10

The elements selection rule (using DSL language and Drools Guvnor):

The same rule in DRL (Drools Rule Language):

```
rule "B1P1A"
when
Classification(d==1, s==2)
then
insert(ElementFactory.newElement("B1P1A"));
```

end

Implementation: a screenshot of the UI

SE3SOOS ×		
📀 📎 🥃 🔇 guvnor.ailab.ifmo.ru/dashboard	b	<u>م</u>
Technical requirements	The lens classification	
aperture speed 🛿 1.8	of optical characteristicsby purposesaccording to design J - 1 W - 2 F - 0 L - 2 Q - 0 features.	The complexity of the lens
angular field 🛿 84 🔦 °	S - O D - 2	
focal length 2 4.5 🚽 mm.	Schematic circuits	
back focal distance 2 🛉 mm.	# Schema	
image quality 🕄 GEOMETRIC, 🔻	0 Y101P + B2A3P + T3F3O	
	1 Y101P + B2A3P + T3F3I	
entrance pupil position FORWARD	2 Y1A1P + B2A3P + T3F3O	
spectral range	3 Y1A1P + B2A3P + T3F3I	
	4 Y1P1P + B2A3P + T3F3O	
Actions	5 Y1P1P + B2A3P + T3F3I	
Classify Synthesis Export		

Conclusion:

- Developed notations for optical elements and structural schemes,
- Implemented a prototype of the system based on the rulebased design method of structural synthesis.

11th FRUCT conference in St.Petersburg

Q & A

National Research University of Information Technologies, Mechanics and Optics