High-Level System-on-Chip Simulator

Orlov Aleksandr SUAI 67, Bolshaya Morskaya, 190000, Saint-Petersburg, RUSSIA alexanderorlov@live.ru

Microelectronic market

Consumer's requirements

are to get next production:

- high-speed
- reliable
- small-sized
- low-power

Manufacturer's task

Is to market their products as <u>quickly</u> as possible

New product development

Software development **T1** Hardware development **T2**

Software development

High-level simulator

- 1. allows rapidly and with minimal cost to
 - inspect
 - set
 - test real system program-logic model without its building
- provides to a user an opportunity to invoke and debug software for this model on it.

Requirements to simulator

- Provide an ability to model invoking high-level software presentation on the systems-on-chip model with an arbitrary configuration;
- Model the next hardware platform's characteristics:
 - delays of data packets sending and reception for each SoC device;
 - delays during data packets transmission through channels;
 - delays during program processes invoking on processing elements;
 - delays for accessing common memory etc.
- Collect statistical information about a simulation process;
- Show textual and graphical information after a simulation process is finished.

Simulator's structure

Program on visual programming language VPL

VPL Language objects types

- Operators
- Data
- Links
- Structures (subprograms)
- References

Simulator's structure

Hardware configuration

- Channels
- Processing elements
- Routers

Hardware configuration

Configuration file

Hardware platform, which is described in file

Hardware platform preparation for Hardwage anather some plat singing simulation

Simulator's window

Simulating 31	%			
Modeling Obj	jects Results			
Modeling period	15000 ns	Message level	Debug 🔷	
3021.000 ns, Rd 3025.000 ns, Rd 3025.000 ns, Rd 3029.000 ns, PE 3029.000 ns, PE 3029.000 ns, PE FuncProc 10142 Planning for pro	puter2: packet ser puter3: receive pa puter3: packet ser 5: PARSING pack 5.FuncProc 10142 5.FuncProc 10142 t is ready! Invoking cess 10142 / Time ====Starting pro 5.FuncProc 10142	nt to dest port = H icket! Dest port = ht to dest port = P et! DestProc = 10 setting input 4 Input 4 is ready = 500 cess: FuncProc 10 invoked function ress: FuncProc 10	touter3 PE5 142 SrcProc = 10157 to 84 ! 142 al (FuncProc 10142):	7 Packet type 0 10142 on iteration = 2
3529.000 ns, PE 4500.000 ns, PE 4500.000 ns, PE	E5: Delete imperma ====Starting pro E1.FuncProc 10005 =1.FuncProc 10005 =====Finising pro	inent process with cess: FuncProc 10 : invoked function : T:3 with size = cess: FuncProc 10(ID = 10142 from pro 005 al (FuncProc 10005): = 4 sent to out port 1 005	gram! 10005 on iteration = 3 0
PackType: 0 Ac FuncProc 10005 Planning for pro 4500.000 ns, PE	cType: 2 SrcProc: is ready! Invoking cess 10005 / Time ====Starting pro 3.FuncProc 10094 =====Finising pro	10005 SrcOut: 10 = 1500 cess: FuncProc 10 : invoked function : r with size = cess: FuncProc 100	DestProc: 10157 De 094 al (FuncProc 10094): 1 sent to out port 7 094	estIn: 3 Data: T:3 Size: 4
PackType: 0 Ac FuncProc 10094 Planning for pro 4500.000 ns, PE	cType: 2 SrcProc: is ready! Invoking cess 10094 / Time ====Starting pro 2.FuncProc 10020	10094 SrcOut: 7 = 1500 cess: FuncProc 10 : invoked function	DestProc: 10157 Des 020 al (FuncProc 10020):	tIn: 0 Data: r Size: 1 10020 on iteration = 3

Statistic

Text file with common statistic about processes

1500 ns: FuncProc 10005 is invoking on PE1 on iteration 1 1500 ns: FuncProc 10094 is invoking on PE3 on iteration 1 1500 ns: FuncProc 10020 is invoking on PE2 on iteration 1 1521 ns: IfProc 10157 is invoking on PE4 on iteration 1 2033 ns: FuncProc 10142 is invoking on PE5 on iteration 1 3000 ns: FuncProc 10020 is invoking on PE2 on iteration 2 3000 ns: FuncProc 10094 is invoking on PE3 on iteration 2 3000 ns: FuncProc 10005 is invoking on PE1 on iteration 2 3017 ns: IfProc 10157 is invoking on PE4 on iteration 2

Processing element occupation graphic

CONCLUSIONS

 High-level simulator allows to model and debug high-level software representation for SoC model

It helps to solve the task of time reduction to market

THANK YOU FOR ATTENTION!