Cgroups as a Resource

¢

. _Management Technique

/

P
i




Functional | Mainframes SEIVers Workstations
Tablets
smartphones
Embedded | Prototypes Medical Game Consoles
Research Industrial SmartTV
Conceptual Telecom Set-top boxes
Doomsday device Aerospace Home Connectivity
Military Automotive
Exceptional < 1p° ~ Distributed Massively Produced = 10’

Massively produced devices have to be cheap,
and what's going to be sacrificed then?



transistors

10,000,000,000
Dual-Core Intel® [tanium® 2 Processor
1,000,000,000
MOORE'S LAW Intel* [tankum® 2 Processor
Intel® Hanium® Processor
100,000,000

Intel Pentium® 4 Processor

Intel® Pentiom® Bl Processor
Intel* Pentium®* Il Processor 10,000,000
Intel® Pentium® Proce Hnrr.f""’
Intel486 Processor L

/ 1,000,000
Intel3B6™ Processor
286 ‘/‘

100,000
8086 /
8080 / 10,000

auna_._,sf
4004 @

1,000
1970 1975 1980 1985 1950 1985 2000 2005 2070

* Network capacity Mass storage volume

* Pixels per dollar

Disc I/0 speed
* CPU productivity

RAM access speed

* Battery charge capacity * etc.



Problems:

* How to make a massively produced cheap and
functional device today?

* How to maximize yield from potential in a given
device?

* How to define acceptable balance of functionality,
price and time-to-market for future devices?



Resources

"You move to an area, and you
multiply, and you multiply, until every
natural resource is consumed... You are

a plague, and we are the cure."”
(C) Agent Smith

"The only limiting factor of the Linux

operating system is its user.”
(C) Linus Torvalds



Linux? Control Groups!

The first step to start learning about cgroups is to
read linux/Documentation/cgroups.txt

The main traits to emphasize:
* hierarchical tree-like cgroups layout

* modular extensive set of resource and isolation
controllers: freezers, CPU sets, RAM memory, swap
memory, CPU slices, real-time priority, block I/0,
network I/0 etc.

* cgroups can be set up and tasks can be operated
immediately from shell



cgroups + proc connector = N900 success,
see /usr/share/policy/etc/current/syspart.conf

Tortured knowledge:
* proc connector reports may be too late
* task nice level shouldn't be touched ever
* cgroup hierarchy layout is important
* task I/O ought to be limited by cgroups
* optimal shape of RAM/swap memory filling curve is unknown

* virtual memory overcommit allowance leads to asynchronous
OOM happenings

* OOM is a mess even worse than expected



Opportunities and Unsolved Problems

* Cgroup partition change of a process under OOM
circumstances

* Analysis and elimination of performance bottlenecks
while moving processes between arbitrary cgroups

* Cgroup aliases?
* Power consumption per task controlled by cgroups

* Create a supported by community application, which
utilizes proc connector to dynamic cgroups closing

S ClC,






T Py
!I.' !

=3
i




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

