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Motivation

* Geo2Tag Location-Based Services platform
was started as project for students who want
to get an Open Source development
experience

* With increasing number of functions which
are supported by platform performance
requirements also increased

* Platform performance evaluation was never

performed
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Goals

* Investigate the most frequent REST requests to
platform performed by users;

* Measure performance (processing time) of the
most frequent requests;

* Determine bottlenecks in request processing;

* Maximize performance of request processing
and DB synchronization,;
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Client-server interaction modeling

* The most frequent REST requests were found
using modeling of LocationClient app
behavior

* Modeling was performed using Markov
chains theory

* Request executions were used as non-
absorbing states of Markov chain

* Client application shutting down was used as
absorbing state of Markov chain i
e T T



Client-server interaction modeling

* During numerical experiments average
number of each request executions before
absorbtion were calculated

* Modeling was performed for different initial
states and tagging frequency

* As aresult of modeling WriteTag and
LoadTags requests had the biggest average
number of executions for all conditions
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Control program profiling

* For determining bottlenecks during
request processing profiling performed

* For each write request whole processing
time and DB interaction time were
measured

* In average DB interaction takes ~95% ot
request processing time

* DB interaction is bottleneck! 7
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Control program profiling
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Platform optimizations

* DB synchronization optimizations:
- Thread synchronization refactoring (less
locks — more performance)
- Algorithm for making decisions about
need of DB synchronization
* DB structure optimization
- Number of tables for tags storage were
decreased to one — WriteTag processing
speed increased
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DB synchronization

* Algorithm which determines does system need DB

synchronization or not

- Periodical check with user-defined period
(UPDATE_INTERVAL)

- Comparison between actual number of transactions to DB
and transactions number counted by platform

- If difference is more than TRANSACTION_DIFF value
than synchronization is performed, else nothing happens

- Variation of UPDATE_INTERVAL and
TRANSACTION_DIFF allows to achieve different ratios
“performance/data consistency”
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Request performance measurement

» Performance were measured for WriteTag and
LoadTag requests in system before and after
optimization

* Processing time and errors data were collected

» For LoadTag set of experiments were performed with
different number of tags in DB — from 0 to 54000 with
step of 1000 tags. For each tag value 10000 LoadTags
requests where performed

* For WriteTag performance measurement was
performed as sequentially increase of tags number in
system from 0 to 12000 by sending WriteTag request
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Results comparison

* Maximum, minimum, average, variance of request
processing time and number of errors where
compared for both systems

* LoadTags

- Maximum processing time decreased
* WriteTag
- Average time decreased by 47.5%
- Maximum time decreased tenfold
- Variance of time decreased hundredfold
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Conclusions

* During performance evaluation where achieved
next results:
- Math model of client application was created
- Bottleneck of request processing was found
- Performance of request processing was
optimized
* Future plans:
- Support NoSQL or GIS-oriented DB
- Support lock-free algorithms and data
structures
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Questions & Answers

Mark Zaslavskiy, Kirill Krinkin
{mark.zaslavskiy, kirill.krinkin}@gmail.com

Open Source & Linux Lab,
http://osll.furct.org, osll@fruct.org


http://osll.furct.org/
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