Geo2Tag performance evaluation

Mark Zaslavskiy, Kirill Krinkin
FRUCT LETT Lab,
Open Source & Linux Lab

| FRUCT-12, Oulu, November, 2012
e T T e



Motivation

* Geo2Tag Location-Based Services platform
was started as project for students who want
to get an Open Source development
experience

* With increasing number of functions which
are supported by platform performance
requirements also increased

* Platform performance evaluation was never

performed

2
e T T



Goals

* Investigate the most frequent REST requests to
platform performed by users;

* Measure performance (processing time) of the
most frequent requests;

* Determine bottlenecks in request processing;

* Maximize performance of request processing
and DB synchronization,;




Platform architecture

i ” /Intérnet " b
| HTTP/JSON
. Platform
Platform Interface Lighttpd
FastCGl PostgreSQL
Control program 4SOL >
e 5= o == I
o Interaction

Request

orocessing with the database




e — TN BT R
Client-server interaction modeling

* The most frequent REST requests were found
using modeling of LocationClient app
behavior

* Modeling was performed using Markov
chains theory

* Request executions were used as non-
absorbing states of Markov chain

* Client application shutting down was used as
absorbing state of Markov chain i
e T T



Client-server interaction modeling

* During numerical experiments average
number of each request executions before
absorbtion were calculated

* Modeling was performed for different initial
states and tagging frequency

* As aresult of modeling WriteTag and
LoadTags requests had the biggest average
number of executions for all conditions

6
e T T



 —— TN BT ™Y
Control program profiling

* For determining bottlenecks during
request processing profiling performed

* For each write request whole processing
time and DB interaction time were
measured

* In average DB interaction takes ~95% ot
request processing time

* DB interaction is bottleneck! 7
e ——



e —— TSR R ™Yy

Control program profiling

0,140000

0,120000

0,100000

E.. 0,080000

£

= 0,060000
0,040000 —+

0,020000 —I - —I
0,000000 I I I

m Total request
processing time

DB interaction




e —— TSR BT RSy
Platform optimizations

* DB synchronization optimizations:
- Thread synchronization refactoring (less
locks — more performance)
- Algorithm for making decisions about
need of DB synchronization
* DB structure optimization
- Number of tables for tags storage were
decreased to one — WriteTag processing
speed increased

9

n



n

DB synchronization

* Algorithm which determines does system need DB

synchronization or not

- Periodical check with user-defined period
(UPDATE_INTERVAL)

- Comparison between actual number of transactions to DB
and transactions number counted by platform

- If difference is more than TRANSACTION_DIFF value
than synchronization is performed, else nothing happens

- Variation of UPDATE_INTERVAL and
TRANSACTION_DIFF allows to achieve different ratios
“performance/data consistency”

10

n



e —— TSR BT RSy
Request performance measurement

» Performance were measured for WriteTag and
LoadTag requests in system before and after
optimization

* Processing time and errors data were collected

» For LoadTag set of experiments were performed with
different number of tags in DB — from 0 to 54000 with
step of 1000 tags. For each tag value 10000 LoadTags
requests where performed

* For WriteTag performance measurement was
performed as sequentially increase of tags number in
system from 0 to 12000 by sending WriteTag request

e T T




e —— TSR R ™Yy
Results comparison

* Maximum, minimum, average, variance of request
processing time and number of errors where
compared for both systems

* LoadTags

- Maximum processing time decreased
* WriteTag
- Average time decreased by 47.5%
- Maximum time decreased tenfold
- Variance of time decreased hundredfold




P ——... s R
Conclusions

* During performance evaluation where achieved
next results:
- Math model of client application was created
- Bottleneck of request processing was found
- Performance of request processing was
optimized
* Future plans:
- Support NoSQL or GIS-oriented DB
- Support lock-free algorithms and data
structures

13



ook
s 0

Questions & Answers

Mark Zaslavskiy, Kirill Krinkin
{mark.zaslavskiy, kirill.krinkin}@gmail.com

Open Source & Linux Lab,
http://osll.furct.org, osll@fruct.org


http://osll.furct.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

