

Geo2Tag performance evaluation

Mark Zaslavskiy, Kirill Krinkin FRUCT LETI Lab, Open Source & Linux Lab

Motivation

- Geo2Tag Location-Based Services platform
 was started as project for students who want
 to get an Open Source development
 experience
- With increasing number of functions which are supported by platform performance requirements also increased
- Platform performance evaluation was never performed

Goals

- Investigate the most frequent REST requests to platform performed by users;
- Measure performance (processing time) of the most frequent requests;
- Determine bottlenecks in request processing;
- Maximize performance of request processing and DB synchronization;

Platform architecture

Client-server interaction modeling

- The most frequent REST requests were found using modeling of LocationClient app behavior
- Modeling was performed using Markov chains theory
- Request executions were used as nonabsorbing states of Markov chain
- Client application shutting down was used as absorbing state of Markov chain

5

Client-server interaction modeling

- During numerical experiments average number of each request executions before absorbtion were calculated
- Modeling was performed for different initial states and tagging frequency
- As a result of modeling WriteTag and LoadTags requests had the biggest average number of executions for all conditions

Control program profiling

- For determining bottlenecks during request processing profiling performed
- For each write request whole processing time and DB interaction time were measured
- In average DB interaction takes ~95% of request processing time
- DB interaction is bottleneck!

Control program profiling

Platform optimizations

- DB synchronization optimizations:
 - Thread synchronization refactoring (less locks – more performance)
 - Algorithm for making decisions about need of DB synchronization
- DB structure optimization
 - Number of tables for tags storage were decreased to one – WriteTag processing speed increased

DB synchronization

- Algorithm which determines does system need DB synchronization or not
 - Periodical check with user-defined period (UPDATE_INTERVAL)
 - Comparison between actual number of transactions to DB and transactions number counted by platform
 - If difference is more than **TRANSACTION_DIFF** value than synchronization is performed, else nothing happens
 - Variation of UPDATE_INTERVAL and TRANSACTION_DIFF allows to achieve different ratios "performance/data consistency"

Request performance measurement

- Performance were measured for WriteTag and LoadTag requests in system before and after optimization
- Processing time and errors data were collected
- For LoadTag set of experiments were performed with different number of tags in DB – from 0 to 54000 with step of 1000 tags. For each tag value 10000 LoadTags requests where performed
- For WriteTag performance measurement was performed as sequentially increase of tags number in system from 0 to 12000 by sending WriteTag request

Results comparison

 Maximum, minimum, average, variance of request processing time and number of errors where compared for both systems

LoadTags

- Maximum processing time decreased

WriteTag

- Average time decreased by 47.5%
- Maximum time decreased tenfold
- Variance of time decreased hundredfold

Conclusions

- During performance evaluation where achieved next results:
 - Math model of client application was created
 - Bottleneck of request processing was found
 - Performance of request processing was optimized
- Future plans:
 - Support NoSQL or GIS-oriented DB
 - Support lock-free algorithms and data structures

Questions & Answers

Mark Zaslavskiy, Kirill Krinkin {mark.zaslavskiy, kirill.krinkin}@gmail.com
Open Source & Linux Lab,
http://osll.furct.org, osll@fruct.org