
RedSib:
a Smart-M3 Semantic Information

Broker implementation

F. Morandi, L. Roffia, A. D’Elia, F. Vergari, T. Salmon Cinotti

Alma Mater Studiorum , Bologna University

{fmorandi, lroffia, adelia, fvergari, tsalmon} arces.unibo.it

FRUCT12 Oulu, 8 November 2012

• A platform supporting environment related co-operative

services is needed

• Heterogeneous devices and data need to be handled

• Required non-functional qualities are scalability, reliability,

security, short reaction time and easy access

Motivation for an
open interoperability platform

SMART-M3 is based on a blackboard architectural model, supports space-based
computing and consists of two main components: semantic information broker (SIB)
and knowledge processor (KP).

• The information in the SIB is stored as a RDF graph

• KPs communicate with the SIB using an XML based protocol called SSAP (Smart
Space Access Protocol)

• A subscribe-notify mechanism for context reactivity is provided

• Several "Knowledge Processor Interface" (KPI) (developed in popular programming
languages including C, C#, Java, PHP, JavaScript and Python) can abstract from the
low-level protocol details.

SIB

KP

KPKP

Introduction to Smart M3

The original Piglet SIB

Sockets TCP
Piglet (C++)

Wilbur

Libraries
(Python)

Sqlite DB

sib-
daemon

(C)
sib-tcp

(C)

D-BUS

Parser & Utilities

libraries (C)

• The Piglet SIB is composed of two daemons and a
set of libraries (e.g. Piglet RDF store, Wilbur query
engine).

• The daemons are seen from the operating system
(i.e. a Linux based system) as independent processes
that exchange content through the D-Bus

SIB-Daemon Implementation:

SIB Architecture:

Un-

subscribe

Asyncronus

Ins/Rem

Queue

Asyncronus

Query

Queue

Main Loop

Scheduler

Rdf_writer

Rdf_retractor

Rdf_reader

Sequential Process

Insert Remove Update Query Subscribe

Threads activated by D-Bus requests

Piglet

Load

Ins/Rem

Load

Query

Execute

Ins/Rem

Execute

Query/Sub

• The sib-daemon is implemented as a
multithreading application where the
scheduler is the main loop thread. Every time
a request operation (i.e. remove, insert,
update, query, subscribe, unsubscribe) comes
from the D-Bus, a new thread is allocated.

• Subscriptions implemented as queries threads
that constantly reload themselves into the
query queue until the corresponding
unsubscription occurs.

Threats

Piglet SIB SWOT Analysis

Strengths Weaknesses

Opportunities

• C core implementation:
Native C implementation of daemons and support libraries
optimizes:

> Optimize performances
> Memory usage

• Separate processes:
D-Bus (originally designed for X Windows) acts as an inter-
process communication (IPC) mechanism.

> Load independently connectivity modules and the sib
core.

• RDF++ materialization:

Starting from the asserted triples and applying the rules
defining the RDF++ semantics it is possible to infer new
information.

> Inferred triples are automatically inserted into the store,
augmenting the knowledge.

• Synchronization at triple level:

The need to control concurrent access on shared RDF sub-
graphs is an important feature in a multi agent scenario.
In the Piglet SIB implementation a prototype of access

control was implemented.

• Diverging DB size and performance:
Piglet RDF store is an experimental software with some
issues left:

> Continuous increase of the DB size even upon removes
> Persistent SQL Lite implementation only .

• Subscription performance impact and stability:
> Subscriptions are managed by the SIB as slow recursive
queries on the triple store.

> The SIB does not detect lost connections and it continues
to perform useless queries.

• Absence of SPARQL support:

Wilbur queries are not maintained anymore and the only

implementation is a Python based library that works strictly
connected with the Piglet RDF store.
> Furthermore, the W3C recommended query method for

RDF since 2008 is SPARQL

• Lack of support for RDF/XML triple encoding:

RDF/XML is one of the most common syntaxes for serializing

RDF knowledge and OWL ontologies.
> According to the Semantic Web stack, the ontology layer is
based on RDF and on XML .

RedSib implementation:

Sockets TCP

Berkley DB, persistent or
volatile

RedSib-daemon (C)

sib-tcp
(C)

D-BUS

Parser & Utilities libraries

(C)

Rasqal (C)

Redland
(C)

Raptor (C)

Main Changes in overall Sib Architecture :

Redland replaced Piglet:
> Native support for SPARQL (1.0 , 1.1 partial)

(implemented in Rasqal)
> Native support for RDF/XML syntax

Async Ins/Rem

Queue

Async Query

Queue

Main Loop Scheduler

Rdf_writer

Rdf_retractor

Rdf_reader

Sequential Processes

Insert Remove Update Query Subscribe

Threads activated by D-Bus requests

Main TS

Context

Status TS

Sub 2 SB

Temp Rm TS

Temp Ins TS

Sub 1 SB

Persistent or

Volatile

Volatile

Redland

Triplestores

Sub N SB
...

Persistent

query emulator

Un

subscribe

Load

Ins/Rem

Load Q uery

Execute

Ins/Rem

Execute

Q uery/Sub

Main Changes in Sib Daemon

• Subscription related
triple patterns are cached in
RAM to avoid the need for disk
queries when an insert or
remove primitive is performed

• New subscription mechanism
based on the state buffer
concept, implemented adding a
new method (Persistent query
emulation)

RedSib implementation, Additional features:
• Garbage collector for subscriptions both in sib-tcp and RedSib-daemon:

> Automatically unsubscribe with subscriptions “broken” sockets.
> Tests socket status transmitting a periodically “space” character (US-ASCII 32) on all subscription

sockets.

• SSAP extensions:
> SPARQL query request and response.
> RDF/XML insert, remove and update.

• RDF/XML insert, remove and update.
Below are reported the rules implemented in the RDF++ module. If a rule is satisfied, the
corresponding inferred triples are added to the triple store, increasing the semantic knowledge.
(1) holds(p, s, o) ⇒ property(p)
(2) holds(rdfs:subClassOf, x, y) ⇐⇒ class(x) ∧ class(y) ∧ [∀z : type(z, x) ⇒ type(z, y)]

(3) holds(rdfs:subPropertyOf, x, y) ⇐⇒ property(x) ∧ property(y) ∧ [∀o, v : holds(x, o, v) ⇒ holds(y, o, v)]
(4) holds(rdfs:domain, p, c) ⇒ property(p) ∧ class(c) ∧ [∀x, y : holds(p, x, y) ⇒ type(x, c)]
(5) holds(rdfs:range, p, c) ⇒ property(p) ∧ class(c) ∧ [∀x, y : holds(p, x, y) ⇒ type(y, c)]

The following rules have not been included in the RDF++ reasoner because they would introduce to
much overhead:

(6) holds(owl:sameAs, x, y) ⇐⇒ x = y
(7) holds(p, x, z) ∧ holds(p, y, z) ∧ type(p, owl:InverseFunctionalProperty) ⇒ holds(owl:sameAs, x, y)

• Synchronization at triple level.
Data access control at triple level is a feature implemented in the Piglet SIB and all the functionalities
have been maintained on the RedSib. Furthermore, the RedSib also support this mechanism with the
new RDF/XML triples encoding.

RedSib, Evaluation of the subscription algoritm:

To validate the proposed subscription algorithm some performance comparison between the
RedSib and the Piglet SIB were carried out.

Chosen Device:

(HW) - Fit-PC2, i.e. an embedded PC based on a 1600 MHz,
dual core Intel® Atom™ Processor with 1 GB RAM.

(SW) - Linux Mint , 32 bit distribution.

Test Description:

• The two implementations (RedSib and Piglet SIB) are compared with their RDF store entirely located in
non-persistent memory (RAM).

• At any iteration (until a maximum of 1000 iterations) a subscription to a single random triple is added,
and several (in our case 50) inserts and removes of single random triples which do not trigger any
notification are repeated.
Every time a new triple is inserted or removed both SIBs check, each one using its own
implementation, if some notification messages have to be delivered.
In this way the average insert (and remove) time as a function of pending subscriptions may be
estimated.

• This test was repeated twice for each SIB, once with an initially empty store and once with nearly
15000 triples sitting in the RDF store.

Subscription handling algorithm evaluation

Subscriptions

0

50

100

150

200

250

300

350

400

450

500

550

600

650

0 100 200 300 400 500 600 700 800 900 1000

RedSib on Populated TS

Sib Piglet on Populated TS

RedSib on Empty TS

Sib Piglet on Empty TS

Insert Time (ms)

Piglet SIB

Piglet SIB

• With no active subscriptions both SIBs have similar performances (5.8 ms for the RedSib, 8.9

ms for the Piglet SIB)

• Insert time rises linearly in all trends (slightly noised by some unpredictable OS overhead)

• Significant increase rate differences may be motivated by two different implementations of

the persistent query emulation algorithm.

Conclusions
The proposed implementation is already used by several research projects, e.g. ARTEMIS-
CHIRON (Health Care), ARTEMIS Internet of Energy (electric mobility and smart grids)

Available new features:

• Overall maturity increase with respect to previous implementations

• SPARQL (and RDF/XML) support

Preliminary results show:

• Improved response time and number of active subscriptions supported

• improved performance profile and stability of the subscription checking mechanism

MAIN ISSUES:

• Security at service and triple level entirely missing from this implementation

• Too much of overhead in SSAP Protocol (based on preliminary tests, performances are
strictly dependent on the length of the SSAP messages in TCP, while the SIB is mostly idle.
Several SSAP parameters are currently unused .

CHALLENGES:

• Turning Smart-M3 into a mature implementation in order to become
the best interoperability solution for Smart Environments

• Improve security and use Smart-M3 to support Distributed Smart Space scenarios (e.g. the
V SIB considered within an EIT ICT Labs 2012 Task).

