
The
Semantic Event Broker

Francesco Morandi

What are we doing and what future for Smart M3?

• Is it possible to consider today Smart M3 still a «triplestore» or an «endpoint»

alternative? Modern SPARQL Endpoint (like Jena, Sesame, Virtuoso...) have:

> Experience (in some cases almost 20 years)
> Improved database distributed managment
> Multithred architecture
> Big communities

(... the only «smart» answer is no.)

• Smart M3 should be a layer over existing triplestore or endpoint, providing new
capabilities for Smart Environments (or CPS) .
• New alghoritms for adding new functionalities and for improving performances.
• Avoiding the «stupid hat» on top of a perfectly working platform.

SPARQL ENDPOINT

SSAP (TCP)

Insert
Remove
Update
Query

GET - POST
(HTTP)

The legacy of the SOFIA project and the particularities of our Semantic Web

• The SIB can be considerate a dynamic real time context handler, so generally has to

store a “limited” amount of triples coming from the real scenarios. We can
consider the Smart Environment and the SIB related by a bijective function of
entities.

• The RDF content changes continuously with relatively “small” triples updates
(“update” will be referred to insert, remove or insert-remove operations) for these
reasons:

> Many of commercial sensors produce periodical updates of a limited number
of basic parameter (e.g. temperature, pollution, hearth rate, weight, pressure...)

 > Aggregator KPs generically send few triples per time as result of some
elaborations, or just some triples for triggering actuators.

 > Actuator KPs generally are notified and consequently update the Smart Space
with some (generally few) results coming from the feedback of the operation.

The legacy of the SOFIA project and the particularities of our Semantic Web

• The SIB store context information is structured for retreiving almost real time data

from the ontology knowledge with no historical purpose. Every historical service
must be done externally (KPs based) for not drammatically affecting the
performances. This problem generally does NOT depends from the specific
application.

• The SIB must avoid syncronization between KPs who share multiple access to the
same resources.

• One of the most powerful feature in Smart M3 is the publish-subscribe
implementation. This allows the KP to ba automatically waken (without consuming
resources) whenever the required parts of graph change, allowing logical
composition of sub-graphs and filtering operations.

Overcoming the SIB

• SPARQL 1.1 (query and update) is now the official W3C language for RDF. All other

methods for quering, subscribing and updating the SIB (RDF operations, other
query methods...) can be considered obsolete . Particularly all the RDF operations
can be considered specific SPARQL sub-cases.

• SPARQL applyied to publish subscribe can become extremely powerful, similar to
rules or event language taking all the advantages of the semantic. For allowing this
a particular alghoritm has been implemented for improving performances and
exploiting the multithreading functionalities.

• A Time Managment mechanism is absolutely necessary in the SIB for allowing
syncronization and wathdogs (the latter extremely difficult to implement in Smart
M3).

To the Semantic Event Broker: The programming model

The reference behaviour: Event Languages.

E.g. TESLA* event based (Running on powerful parallel HW, like CUDA):
Events are more powerful due to the time integration and performances.

Possible to have the same behaviour with the added value of the semantic ?
(Related Article C-SPARQL, EP-SPARQL, ...)

Extremely difficult to implement a rule like this in Smart M3 ordinary KP..

A KP for having this feature can be complex.
> Thread with Sleeps , couter thread with reset..
> Syncronizations

define Fire (Val)
from Smoke () and
each Temp(Val > 45) within 5 min from Smoke
where
Val = Temp.Val

THE KP MODEL
SHOULD BE SIMPLER

AND BETTER DEFINED

To the Semantic Event Broker: The programming model

We can imagine to indroduce some new and specialized class of KPs, event-oriented and time-
based: the Semantic Event Processor (SEP)

A SEP can interact only with the SEB:

- Aggregator SEP

Or even with with the Physical World:

- Producer SEP
- Consumer SEP

Producer SEP

Physical World
Semantic Web

Sensors

Incoming
Events

Sensors Data

Outcoming
SPARQL Updates

Incoming Events
SPARQL Subscribe
Indications

Actuators
Outcoming

 Actuator
Operations

Consumer SEP

Legacy Interface

Legacy Interface

Aggregator

SEP

Semantic Web

Outcoming
Reactions
RDF Updates

Incoming Events
Subscribe Indications

Processing

To the Semantic Event Broker: The programming model

• Every Producer SEP is provided with a Legacy Layer (able to read data from the physical
world) and performs SPARQL Updates on changes.

• Consumer KP holds a SPARQL Subscribe and send data to the legacy layer on every variation.

To the Semantic Event Broker: The programming model

Every aggregator SEP is based on :

• Context Subscribe (Sparql Subscribe)
• Callback

o Processing (Combinatorial, Causal) [Optional]
o Sparql Update (Scheduled[Optional])

And on time functionalities.

To the Semantic Event Broker: Example

The scenario includes a presence sensor and a lamp.
(the example is almost identical to the fire alarm of the events)

Behavior:
• If a presence is detected the lamp must be turned on.
• When the presence is no more detected for 10 seconds the lamp must be switched off.

To the Semantic Event Broker: Example

Producer and consumer KP:

To the Semantic Event Broker: Example

Aggregator:

ASK

WHERE
{ ns:PresenceSensor_123 rdf:type ns:Sensor .

 ns:PresenceSensor_123 ns#hasValue “True” }

CALLBACK (On variation)

Processing SEP
Agent TurnLampOn

SELECT ?timestamp

WHERE
{ ns:PresenceSensor_123 rdf:type ns:Sensor .
 ns:PresenceSensor_123 ns#hasValue “False” .
 ns:PresenceSensor_123 ns#hasSIBTimestamp ?timestamp }

 timestamp = 1378737852.770930
 time_to_switch = timestamp + 10

CALLBACK (On variation)

Processing SEP
Agent TurnLampOffDelayed

INSERT
{ns:LampActuator_456 ns#hasValue “True” .
ns:LampActuator_456 ns:hasSIBTimestamp ?currentsibtime}

DELETE
{ns:LampActuator_456 ns#hasValue “False” .
ns:LampActuator_456 ns:hasSIBTimestamp ?OLDsibtime}

WHERE
{ ns:LampActuator_456 ns#hasValue “False” .
 ns:LampActuator_456 ns:hasSIBTimestamp ?OLDsibtime .
 BIND (get_sib_tme() AS ?currentsibtime) }

 SCHEDULED AT (1378737862.770930)

INSERT
{ns:LampActuator_456 ns#hasValue “False” .
ns:LampActuator_456 ns:hasSIBTimestamp ? currentsibtime}
DELETE
{ns:LampActuator_456 ns#hasValue “True” .
ns:LampActuator_456 ns:hasSIBTimestamp ?OLDsibtime}
WHERE
{ ns:PresenceSensor_123 ns#hasValue “False” .
 ns:PresenceSensor_123 ns#hasSIBTimestamp “1378737852.770930”.

ns:LampActuator_456 ns#hasValue “True” .
ns:LampActuator_456 ns:hasSIBTimestamp ?OLDsibtime .
BIND (get_sib_tme() AS ?currentsibtime) }

Context subscribe

SPARQL Update

Processing: Empty

Context subscribe

Processing

SPARQL
Update

To the Semantic Event Broker: Example

Time behaviour:

To the Semantic Event Broker: The Internal Architecture

- Multithread for any active subscribe
- All the update operations are forwarded in to the threads throgh async queues
- Every subscription thread is provided by

o LUTT
o Internal Sub-Triplestore
o Sparql Accellerator * (or Sparql Engine)
o Dispatcher for Indications

Real «Core» of the overall
implementation

Conclusions:

As simple triplestore, Smart M3 can be considered inadequate compared to most
SPARQL Endpoints.

If we agree to consider Smart M3 a layer over existing TS the aim can be:

Create a convergence with the world of events by:

 A KP implementation philosophy based on only on SPARQL SUBSCRIBE, SPARQL

UPDATE and time funcitionalities. (e.g. queries will become obsolete)

 An internal architecture based on :

 - SPARQL optimization for the subscriptions
 - Multithreading for subscriptions
 - Time managment managed as sleeps in theads (low resource)

