
KSP: SPARQL-like knowledge sharing

for resource restricted devices

 M3 Semantic Interoperability Workshop

Jussi Kiljander

VTT Technical Research Centre of Finland

2 14/11/2013

Introduction

 Fundamental idea in M3 is to utilize semantic technologies to achieve

interoperability in pervasive computing environments.

 Typical devices (e.g. sensors, actuators, etc.) and communication

technologies (e.g. 6LowPAN, BLE, etc.) utilized in pervasive computing

are resource restricted.

 On the other hand, semantic technologies use verbose syntaxes that are

not suitable for resource restricted devices.

 Additionally, the M3 communication protocol (i.e. SSAP) is based on XML

format that both requires a large amount of memory and is slow to process

in low capacity computing platforms.

3 14/11/2013

Introduction cont.

 In M3 systems this problem has been typically solved by utilizing gateways

which transform proprietary format data from low capacity devices to

semantic format.

 This approach reduces interoperability and complicates the system as

for each new device a new gateway is needed (i.e. gateways are

application/device specific).

 We propose a novel Knowledge Sharing Protocol (KSP) that enables

semantic communication in low capacity devices and networks by

providing:

 SPARQL-like mechanisms for accessing and manipulating

knowledge in smart spaces in a compact binary format

 methods for simplifying application logic and reducing traffic in

low capacity networks.

4 14/11/2013

Differences between KSP and SSAP

1) In KSP all operations are based on SPARQL 1.1.

2) Binary format for the messages instead of XML

3) No join and leave operations

4) In KSP it is possible to define the maximum size for SIB responses

5) KSP defines persistent format also for update operations

5 14/11/2013

Knowledge Sharing Protocol stack

6 14/11/2013

Messaging Model

 Message types: Non-confirmable (NON), and Confirmable (CON),

response (RES), indication (IND), acknowledgement (ACK).

7 14/11/2013

Message format: Header

 Messages consist of three parts: header, data, and options.

 Fixed size header field contains parameters such as version,

transaction type, request type, and transaction identifier that are

common for all transactions.

 The structure of the header field depends on the message type

(REQ, RES, IND, or ACK) and the transport technology (e.g. TCP,

UDP, BLE, etc.).

8 14/11/2013

Header format for TCP

9 14/11/2013

Header format for UDP

10 14/11/2013

Transactions

Transaction type Code

DELETE_PERSISTENT 0x0a

INSERT_PERSISTENT 0x0b

UPDATE_PERSISTENT 0x0c

SELECT_PERSISTENT 0x0d

ASK_ PERSISTENT 0x0e

CONSTRUCT_ PERSISTENT 0x0f

TERMINATE 0x10

RESET 0x11

Transaction type Code

DELETE DATA 0x01

INSERT DATA 0x02

UPDATE DATA 0x03

DELETE 0x04

INSERT 0x05

UPDATE 0x06

SELECT 0x07

ASK 0x08

CONSTRUCT 0x09

Transaction type Code

CREATE 0x12

DROP 0x13

COPY 0x14

MOVE 0x15

11 14/11/2013

Message Format: Data Field

 In query and update messages the header field is followed by a

data field which contains transaction specific information.

 In TERMINATE messages the data field is not needed.

 The structure of the data field depends on the operation type.

 E.g. SELECT, CONSTRUCT, ASK, DELETE, INSERT, etc.

12 14/11/2013

Data field format for query operations

13 14/11/2013

Data field format for update operations

14 14/11/2013

Encoding Format for RDF graph

Type Code

Empty 0x00

URI 0x01

Reserved

Word

0x02

Variable 0x03

Literal 0x04

 The Graph field consists of 8-bit triple count (TC) field

and a zero or more (maximum 255) Triple fields.

 Each Triple field starts with 3-bit ST, 2-bit PT, and 3-bit

OT fields, which specify the content of the following

Subject, Predicate, and Object fields, respectively.

15 14/11/2013

Field structure for RDF terms, variables and reserved words

Type Value

xsd:string 0x00

xsd:interger 0x01

xsd:float 0x02

xsd:dateTime 0x03

xsd:Boolean 0x04

16 14/11/2013

Reserved Words

Word Value

rdf:type 0x00

rdfs:Class 0x01

rdfs:subClassOf 0x02

rdfs:property 0x03

rdfs:subPropertyOf 0x04

rdfs:range 0x05

rdfs:domain 0x06

owl:TransitiveProperty 0x07

owl:SameAs 0x08

xsd:string 0x09

xsd:interger 0x0a

xsd:float 0x0b

xsd:dateTime 0x0c

xsd:Boolean 0x0d

17 14/11/2013

Message Format and Semantics: Options field

 One of the main advantages of XML

based protocols is extendibility.

 In KSP options are a way to achieve

a certain level of extendibility in a

non-XML protocol.

 Options also enable to create more

compact messages by leaving out

parts that are not needed in the

particular message.

Option Code

PREFIX 0x00

DELETE GRAPH 0x01

INSERT GRAPH 0x02

QUERY GRAPH 0x03

FILTER 0x04

SOLUTION MODIFIER 0x05

BIND 0x06

MAX RESPONSE SIZE 0x07

CREDENTIALS 0x08

18 14/11/2013

Options field: encoding

19 14/11/2013

Evaluation

 Comparison of message sizes of KSP, SSAP/XML, and

SSAP/WAX protocols in Smart Greenhouse demonstration.

 The KSP messages were on average 87.08% and 70.09% shorter

than the SSAP/XML and SSAP/WAX messages respectfully.

 We also demonstrated how a KP implementation can be

significantly simplified with persistent update operations.

20 14/11/2013

Evaluation

requests responses

21 14/11/2013

Drawbacks and Limitations

 Binary format limits both the amount and the size of entities such

as prefixes, graphs, triples and results.

 KSP requires a good application programming interface (API)

because the binary format is not suitable to be used by developers

as such.

 Some of the SPARQL 1.1 functionalities are not supported by the

KSP because they would have made the KSP too complicated.

 E.g. the current version of the KSP does not support

DESCRIBE queries, Property paths, Aggregates and

Subqueries, and many SPARQL functions.

22 14/11/2013

Conclusions and Ideas for Future work

 By providing more compact messages and operations that

simplify the application logic the KSP is more suitable for low

capacity devices and networks than the official SSAP.

 The KSP has certain limitations compared to standard SPARQL

1.1 that might restrict its use in certain situations.

 The KSP can be extended, but there is also a need for M3

protocol that supports the official SPARQL 1.1 as such.

 In the future, we should decide what do with the SSAP.

 replace with HTTP/SPARQL or CoAP/SPARQL?

 design SSAP v2.0?

23 14/11/2013

Thank You!

