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Why analyze the audience? 
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Applications:  
Visitors calculation systems 

Video surveillance 

Automatic systems of accident prevention 

Digital signage 

 



Audience Analysis System 
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A block diagram of the proposed application for video analysis. 



Face Detection 
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• Integral image 

representation 

 

• Learning classification 

functions using 

AdaBoost 

 

• Combining classifiers in 

a cascade structure  

Viola-Jones Object Detection Algorithm: 

Viola P., Jones M. Rapid object detection using a boosted cascade of simple features // Proc. Int. 

Conf. on Computer Vision and Pattern Recognition. 2001. № 1. P. 511-518. 



Face Tracking 
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It assumes that the flow is 

essentially constant in a 

local neighbourhood of the 

pixel under consideration, 

and solves the basic optical 

flow equations for all the 

pixels in that 

neighbourhood, by the 

least squares criterion 

Lucas-Kanade Method: 

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In 

Proceedings of the International Joint Conference on Artificial Intelligence, pp. 674–679, 1981. 



Face Tracking 
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3 Tracking Problems: 

1. Detected face window scaling and offset calculation 

during motion 

 

2. Face overlapping with other objects 

 

3. Face crossing 



Lucas-Kanade Modification 
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Lucas-Kanade-1 

Tracked object offset is estimated as an average value of key 

pixels offsets. Face window scaling factor is defined as key 

pixels scaling factors averaging. 

Lucas-Kanade-2 

Median filtration of key pixels offsets and scaling factors is 

added.  



Lucas-Kanade Modification 
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Lucas-Kanade-3 

1 2 3

4 5 6

7 8 9

Displacement of a point 
in an incorrect area

Lucas-Kanade-3 detects 

overlapping and crossing by 

dividing the window into square 

regions and labelling each key 

pixel to the corresponding region. 

If a pixel moves out of its region, 

as it is showed in fig., then such 

pixel is removed from further 

consideration being suspected as 

an overlapped one.  



Face Tracking Test Video 

10 FRUCT-14 2013, Finland, 11-15 November 



Face tracking algorithms comparison 
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Gender Classification 
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Gender Classification 
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Visual example: 

─ male ─ female 



Gender Classification 

15 FRUCT-14 2013, Finland, 11-15 November 

Parameter Value 

The total number of images 8 654 

The total number of male faces 5 250 

The total number of female faces 5 250 

Minimum image resolution 640×480 

Color space format RGB 

Face position Frontal 

Lighting conditions, background No restrictions 

People’s age From 18 to 65 years old 

The Proposed Training and Testing Database Parameters 



Gender Classification 
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ROC-curves of tested gender recognition algorithms  
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Gender Classification 

17 FRUCT-14 2013, Finland, 11-15 November 

Algorithm 

 

Parameter 

AF-SVM 

(M=5000) 

AF-SVM 

(M=400) 

 

Recognition rate True False True False 

Classified as “male”, % 90.6 9.4 80 20 

Classified as “female”, % 91 9 79.3 20.7 

Total classification rate, % 90.8 9.2 79.6 20.4 

Comparative Analysis of Tested Algorithms Performance 



Age Classification 
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Age Classification 
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I Stage Image Database Parameters  



Age Classification 
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Binary Classifier’s ROC Curves  
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Age Classification 
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Classification Results  



Age Classification 
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Web-application 27faces.com  
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Web-application 27faces.com  
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user management system 

Users 



Web-application 27faces.com  

27 FRUCT-14 2013, Finland, 11-15 November 

Token auth-system 

Tokens: 
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Conclusions 

 

•  The 27faces system provides collection and processing 

of information about the audience in real time.  

 

•    The 27faces system works in a cloud.  

 

• A modern efficient classification algorithm allows to 

recognize viewer’s gender with more than 90% accuracy. 
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Welcome to 27faces.com  
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