## Short-Range Communications within Emerging Wireless Networks and Architectures: A Survey

**Aleksandr Ometov** 

14.11.2013 FRUCT 14 Helsinki, Finland



# Outline

- Motivation in current WLANs
- Binary Exponential Backoff (BEB) protocol
- Regenerative analysis
- Validations
- Conclusions and future work



# Goals

- Focus on the survey
- Identification model for modern network's evaluation
- Saturation throughput estimation
- IEEE 802.11-2012 calibrated simulator







# **Modeling Assumptions**

- Communication system
  - Fixed topology
  - Synchronization
- Transmission Channel
  - IEEE 802.11-2012 timings
  - Saturated traffic
  - Noise-free environment
- Retransmissions
  - Lossless System (Conventional)
  - Lossy System (Limited number of retries)
- Model is similar to Bianchi's but does not use Markov chain
  - G. Bianchi, "Performance analysis of the IEEE 802.11 distributed coordination function", IEEE Journal on Selected Areas in Communications, vol. 18, no. 3, pp. 535–547, 2000.





# Binary Exponential Backoff (BEB)



- Bianchi's Lossless to Lossy model (Example for equally slotted system)
- BEB stages number m; W0 initial backoff window size,
  M number of users
- Retransmission **attempts** number *K* (Infinite for Lossless, and finite for Lossy)
- **Conditional collision probability** for the system with **M** users:

 $p_c = 1 - (1 - p_t)^{M-1}$ 

## **Unequally-Slotted System**



- Each slot is rescaled to the type of packet transmitted (IEEE 802.11-2012)
- Access mechanisms
  - Basic Access
    - AIFS Arbitration Inter-Frame Spacing
    - BOT random BackOff Time
    - BA Block acknowledgment
    - CFE Contention-Free End
  - RTS/CTS

## Used RTS/CTS mechanism



- Noise-free channel
  - Short Retry Limit was used for Lossy system
- Protection against hidden terminal, reduce time waste due to collision
  - RTS Ready-to-Send
  - CTS Clear-to-Send



## Main analysis

- Obtained with the use of regeneration cycle concept
  - Transmission probability:

 $p_{t} = \lim_{n \to \infty} \frac{\sum_{i=1}^{n} B^{(i)}}{\sum_{i=1}^{n} D^{(i)}} = \frac{E[B]}{E[D]} \text{ where } E[B] - \text{average packet transmission attempts,}$ E[D] - average cycle duration $E[B] = \sum_{i=1}^{K+1} i \Pr\{B=i\} = (1-p_{c}) \sum_{i=1}^{K+1} i p_{c}^{i-1} + (K+1) p_{c}^{K+1} = \frac{1-p_{c}^{K+1}}{1-p_{c}}$ 

$$\inf_{E} K+1 \le m \\ E[D'] = (1-p_c) \left[ \sum_{i=1}^{K+1} \left( 2^{i-1}W_0 - \frac{W_0 - i}{2} \right) p_c^{i-1} \right] + p_c^{K+1} \left( 2^K W_0 - \frac{W_0 - (K+1)}{2} \right)$$

$$\begin{split} \mathsf{K+1} > \mathsf{m} \\ E[D''] &= (1-p_c) \left[ \sum_{i=1}^{m+1} \left( 2^{i-1} W_0 - \frac{W_0 - i}{2} \right) p_c^{i-1} + \sum_{i=m+2}^{K+1} \left( 2^{m-1} W_0 (i-m+1) - \frac{W_0 - i}{2} \right) p_c^{i-1} \right] + \\ &+ p_c^{K+1} \left( 2^{m-1} W_0 (K-m+2) - \frac{W_0 - (K+1)}{2} \right) \end{split}$$



#### **Final metrics**

- Collision and Successful slots duration:  $\begin{cases} T_s = RTS + SIFS + CTS + SIFS + H + E[P] + \\ +SIFS + BA + AIFS \end{cases}$ 
  - $T_c = RTS + AIFS.$
- Saturation throughput:

$$S = \frac{P_t P_s E[P]}{(1 - P_t)\sigma + P_t P_s T_s + P_t (1 - P_s) T_c}$$

$$P_t = 1 - (1 - p_t)^M \quad P_s = M p_t (1 - p_t)^{M-1}$$

• Maximum D2D link throughput:

 $C_{\rm RTS/CTS} \cong \frac{N_{pac} * Length_{pac}}{AIFS + M[BOT] + RTS + CTS + BA + CFE + 4 * SIFS + \frac{N_{pac} * Length_{pac}}{R}}$ 

#### Throughput for Current Standard and

• 802.11-2012 Saturation throughput for various rates



#### Model Calibration for Lossless system

• System calibration with Bianchi's data at 1 Mbps



TAMPERE UNIVERSITY OF TECHNOLOGY

## **Timings for Current Standard**

• *802.11-2012* Saturation throughput for *65 Mbps* rate



TAMPERE UNIVERSITY OF TECHNOLOGY

## Results for Lossy system

- Maximum retransmission attempts number 3
- Rate 65 Mbps



# Conclusions

- Simplified model that converges test bench, simulation, analytical approach
  - Proposed simple and flexible model, scales for many parameters
  - Enables saturation throughput estimation
- Future Work
  - Extending the model to metropolitan traffic conditions
  - Real channel effect

# Thank you for your attention

Questions?



#### Core system parameters

| Parameter                        | Value          |
|----------------------------------|----------------|
| BitRate                          | 1.0, 53.0 MBps |
| Number of users                  | 5 - 55         |
| Initial Back-off window          | 32             |
| Back-off window power            | 3              |
| Short Retry Limit                | 7              |
| Modelling duration               | $50 \mu s$     |
| Slot length                      | $9\mu$         |
| SIFS                             | $16\mu$        |
| Block Acknowledgement duration   | $48\mu$        |
| Request-To-Send duration         | $48\mu$        |
| Clear-To-Send duration           | $44\mu$        |
| CF-End duration                  | $44\mu$        |
| Maximum Transmission Opportunity | $1300\mu$      |
| MAC Header                       | 244 bits       |

