



## NoC Performance Parameters Estimation at Design Stage

15th Conference of Open Innovations Association FRUCT

Nadezhda Matveeva, Elena Suvorova State University of Aerospace Instrumentation Saint-Petersburg, Russia





## Introduction

- The task of designing effective systems is difficult
- Weight, power consumption of Network-on-Chip (NoC) should be as low as possible
- Performance, processing speed should be as high as possible
- Different methods of performance evaluation can be used when the structure of the system is being designed





# of performance evaluation

Current calculators

• Deterministic network calculators

Based on the graph theory

- "Physical" network calculators
  - Based on usage of calculator models built for various physical processes
- Network calculus
  - Based on flow models for characteristics calculation
- Probabilistic calculators

> Based on the theory of queuing systems





- Based on the queuing system
- Can be used for different types of communication systems (bus, switch, NoC)
- Can be used to evaluate the performance of communication systems based on different topologies (regular and irregular)
- Supports networks with wormhole routing and with buffering





## **Calculation principles**

- Open-loop stochastic networks are used to perform evaluations
- Communication system considered as a set of servers and queues of requests for servers
- Requests are transactions between applications running on master and slave devices
- The fact is taken into account that different transactions between different master and slave devices may have different timing values





### Main steps

### Step 0

• At the initial stage data path between communicating applications *i* and *j* is defined. Number of data flows is defined for each switch.

### Step 1

 Each switch is assigned unique number. Data transmission time for each flow is computed for each of transit switches. Total load of the output port is determined.

### Step 2

• Average and maximum time for each flow is calculated along all data paths. Switch port load is calculated.







Taken into account:

- Communication system type (bus, switch, NoC)
- Routing scheme (wormhole routing and with buffering)
- Type of service disciplines (with priority and without)
- Slave's ability to perform reading and writing transactions in parallel





### Some definitions

- Transaction transmission time
- *Tt* Time interval between application requests
  - Average waiting time
    - Total transmission delay of data flows through concrete port
- $Th_k$

*Trech*<sup>*i*</sup>

W

Tsum

Ts

- Header processing time in switch k
- Packet header transfer time from the input port to the output port of the switch
- Time of packet data transmission through switch output port



R

 $T trans_{i}^{\iota}$ 

- Data transmission time of packet between application i and j through switch input port
- Load







Master m

Slave s

AHB

Master 1

Slave 1

- AHB bus has 1 server for read and write transactions
- Bus load is calculated taking into account all transactions





### **AXI Bus**



- AXI bus has 2 separate servers (server of read and write)
- Read and write bus load are calculated separately

$$Rr_{ij} = \begin{cases} \frac{Tsr_{ij}}{Ttr_{ij}}, Ttr_{ij} > 0, Tsr_{ij} > 0 \\ 0, Ttr_{ij} = 0UTsr_{ij} = 0 \end{cases} Rw_{ij} = \begin{cases} \frac{Tsw_{ij}}{Ttw_{ij}}, Ttw_{ij} > 0, Tsw_{ij} > 0 \\ 0, Ttr_{ij} = 0UTsr_{ij} = 0 \end{cases} Rw_{ij} = \begin{cases} \frac{Tsw_{ij}}{Ttw_{ij}}, Ttw_{ij} > 0, Tsw_{ij} > 0 \\ 0, Ttw_{ij} = 0UTsw_{ij} = 0 \end{cases}$$

$$Rread = \sum_{i=0}^{|\{Mm\}|-1, \{Ms\}|-1} \sum_{j=0}^{N} Rr_{ij} \qquad Rwrite = \sum_{i=0}^{|\{Mm\}|-1, \{Ms\}|-1} \sum_{j=0}^{N} Rw_{ij}$$

$$Tavr_{ij} = Wr_{ij} + Tsr_{ij} \qquad Tavw_{ij} = Ww_{ij} + Tsw_{ij}$$







Data flow 2

Mast

**TN 3** 

TN 2

Slave port

Port 7

Switch

Port 1

Port 2

Port 5

### Switch

Data flow 1

Master

Master port

**TN 1** 

- Uses a hierarchical queuing system
- Servers of slave devices are on the first level of hierarchy
- Servers of master devices are on the second level of hierarchy
- Switch port is server



15th FRUCT Conference, 21-25 April 2014, Saint-Petersburg, Russia





### NoCs

- Server is input/output part of a port
- For all switches data flows are defined according to routing information
- Load of output part of the port is calculated as total utilization of all data flows passing through this output port
- Average data transmission time for each data flow is estimated in every port of route and along the entire route







### Some formulas for NoC

Average and Maximum transmission packet delay between application *i* and *j* through transit *k* switch (**wormhole routing**)

$$Tavij_k = Trech_j^i + Th_k + W + Ttrans_j^i$$

$$Tmax_j^i = Trech_j^i + Th_k + Tsum + Ttrans_j^i$$

Average and Maximum transmission packet delay between application *i* and *j* through transit *k* switch (**with buffering**)

$$Tavij_k = Trec_j^i + Th_k + W + Ttrans_j^i$$

$$Tmax_{j}^{i} = Trec_{j}^{i} + Th_{k} + Tsum + Ttrans_{j}^{i}$$



### Build data path



#### Step 0

Represent the system in the graph form. Device of the system is vertex. Link between adjacent nodes is edge. All vertexes have the "unmarked" status.

#### Step 1

Lists "Front1" and "Front2" are empty. Specify the source and receiver vertexes.

#### Step 2

Front1 = source vertex

#### Step 3

While the receiver vertex is not reached or the list Front2 is empty perform *step 4 - step 5* 

#### Step 4

Front2 = Front2 + adjacent vertex from the set of vertexes with "unmarked" and "marked" status.

#### Step 5

For all vertexes from Front1 status is "viewed". Clear Front1. Copy Front2 to Front1. For all vertexes from Front1 status is "marked".

#### Step 6

If receiver vertex is achievable, then data path is build.

If receiver vertex is not achievable, then data path cannot be built.







### Modeling System

- We use the Digital Communication Network Simulator (DCNSimulator)
- It is based on Qt and SystemC
- It consists of the simulation engine and libraries of network components
- Simulated device models are written in C++
- Application software algorithms can run at end nodes thus generating realistic traffic for the simulated network





### Example1

- Type of communication system is NoC
- This system consists of 6 terminal nodes and 9 switches
- Network topology is mesh
- Header length = 2 byte
- Packet length for all data flows = 126, 254, 510 byte
- Clock period = 10 ns
- Header processing time in switch = 35 clock cycles





### Simulation and Theoretical Results

| Data flow<br>(source-destination) | Theoretical maximum transmission delay, ns | Simulation maximum<br>transmission delay, ns |
|-----------------------------------|--------------------------------------------|----------------------------------------------|
| TN10-TN17                         | 11000                                      | 10610                                        |
| TN12-TN15                         | 16300                                      | 13960                                        |
| TN11- TN16                        | 9200                                       | 7160                                         |







### Example2

- Type of communication system is switch
- This system consists of RISC, memory blocks (MEM1, MEM2, MEM3), two DMASpW and ConfSpW, MPORT and ConfMPORT
- Header length = 2 byte
- Packet length for all data flows = 126 byte
- Clock period = 10 ns
- Header processing time in switch = 35 clock cycles









### Simulation results



15th FRUCT Conference, 21-25 April 2014, Saint-Petersburg, Russia







| Data flow<br>(source-destination) | Theoretical maximum transmission delay, ns | Simulation maximum<br>transmission delay, ns |
|-----------------------------------|--------------------------------------------|----------------------------------------------|
| RISC-MEM3                         | 20700                                      | 13270                                        |
| MPORT-MEM3                        |                                            | 16420                                        |
| DMASpW2– MEM3                     |                                            | 13290                                        |
| DMASpW2–MEM1                      |                                            | 15920                                        |
| RISC-MEM1                         |                                            | 13280                                        |
| DMASpW1–MEM1                      |                                            | 16500                                        |
| MPORT-MEM1                        |                                            | 13330                                        |
| DMASpW1–MEM3                      |                                            | 16480                                        |
| RISC–MEM2                         | 24200                                      | 13280                                        |
| RISC–ConfSpW2                     |                                            | 13270                                        |
| MPORT-MEM2                        |                                            | 13350                                        |
| DMASpW1–MEM2                      |                                            | 16560                                        |
| DMASpW2–MEM2                      |                                            | 13330                                        |
| RISC–ConfSpW1                     | 13700                                      | 13230                                        |
| MPORT–ConfSpW1                    |                                            | 13220                                        |
| RISC–ConfMPORT                    | 13200                                      | 12760                                        |
| MPORT–ConfSpW2                    |                                            | 12900                                        |

15th FRUCT Conference, 21-25 April 2014, Saint-Petersburg, Russia





## Conclusion

- We proposed an approach to evaluate the performance and operating characteristics of different communication systems
- Using the obtained values of system characteristics designer can evaluate the system performance at the stage of architectural design
- It allows identifying the bottlenecks in the system and verifies that the system corresponds to requirements according to which it was developed
- Proposed method can also be used for networks with wormhole routing and with buffering





## **Contact information**

Matveeva Nadezhda

e-mail: n.matveeva88@gmail.com

• Suvorova Elena

e-mail: suvorova@aanet.ru



