Analysis of Capacity of Picocell with Dominating Video Streaming Traffic

Evgeny Bakin, Anna Borisovskaya, Igor Pastushok

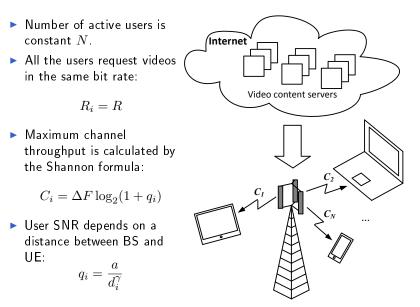
Saint-Petersburg State University of Aerospace Instrumentation

Saint-Petersburg, 2014

A common problem for a network developer

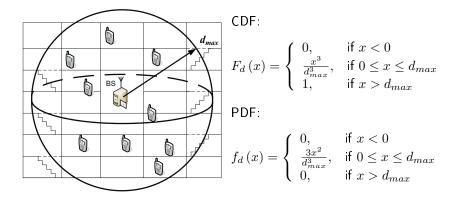
- Centralized wireless networks may contain a sufficient number of users.
- If resources are not enough for requiring to quality of service (QoS) for each user, then network is congested.
- The possible causes of users video playback degradation:
 - **Rebuffering** state of streaming invoked when the playback buffer is emptied.
 - Jitter variation of playback speed.
 - **Playback smoothness** frequency of video bit rate switching.
- A common problem for a network developer is estimation of number of users, who can simultaneously watch video content without playback degradation.

General description of system model



Users location in picocell

 User disposition can be modeled with an uniform distribution in sphere, which radius corresponds to a maximum distance d_{max}.



Definition

Congestion is an event, when total amount of required resources is greater than one.

$$Pr\{\text{Congestion}\} = Pr\left\{\sum_{i=1}^{N} \frac{R_i}{C_i} \ge 1\right\} = Pr\left\{\sum_{i=1}^{N} \frac{1}{\log_2(1+q_i)} \ge \frac{\Delta F}{R}\right\}$$

Definition

Congestion is an event, when total amount of required resources is greater than one.

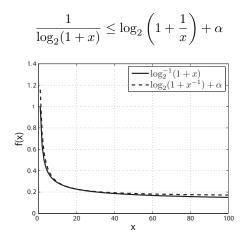
$$Pr\{\text{Congestion}\} = Pr\left\{\sum_{i=1}^{N} \frac{R_i}{C_i} \ge 1\right\} = Pr\left\{\sum_{i=1}^{N} \frac{1}{\log_2(1+q_i)} \ge \frac{\Delta F}{R}\right\}$$

Definition

Network capacity N_c is a maximum number of users, for which the probability of congestion is less than given level p_c .

$$N_c = \arg\max_{N} \left\{ Pr\left\{ \sum_{i=1}^{N} \frac{R_i}{C_i} \ge 1 \right\} \le p_c \right\}$$

Auxiliary Inequality



$$Pr\{\text{Congestion}\} \le Pr\left\{\sum_{i=1}^{N} \left(\log_2\left(1+\frac{1}{q_i}\right)+\alpha\right) \ge \frac{\Delta F}{R}\right\}$$

Approximate Calculation of Congestion Probability

• Denote:
$$\log_2\left(1+rac{1}{q_i}
ight)+lpha$$
 as X_i and $\sum\limits_{i=1}^N X_i$ as S_N

According to Central Limit Theorem (CLT), distribution of S_N is close to the normal distribution with mean E [S_N] and variance Var [S_N].

$$Pr\left\{\text{Congestion}\right\} \le Pr\left\{S_N \ge \frac{\Delta F}{R}\right\} \approx Q\left(\frac{\Delta F - E\left[S_N\right]R}{R\sqrt{Var\left[S_N\right]}}\right)$$

Here: E [S_N] = N · E [X_i], Var [S_N] = N · Var [X_i], since X_i are independent random variables.

Upper Bound of Congestion Probability

As was mentioned above:

$$Pr\{\text{Congestion}\} \le Pr\left\{S_N \ge \frac{\Delta F}{R}\right\}$$

② For finding upper bound for $Pr\left\{S_N \ge \frac{\Delta F}{R}\right\}$ Hoeffding inequality can be used. According to it:

$$Pr\{S_N - E[S_N] \ge t\} \le \begin{cases} e^{-\frac{2t^2}{N(x_{max} - x_{min})^2}}, & t > 0\\ 1, & t \le 0 \end{cases}$$

where $X_i \in [x_{min}, x_{max}]$, $x_{min} = \alpha$, $x_{max} = \log_2\left(1 + \frac{d_{max}^3}{a}\right) + \alpha$. Thus:

$$Pr\{\text{Congestion}\} \leq \begin{cases} -\frac{2}{N} \left(\frac{\frac{\Delta F}{R} - N \cdot E[X_i]}{\log_2\left(1 + \frac{d_{max}}{a}\right)}\right)^2, & N < \frac{\Delta F}{R \cdot E[X_i]} \\ 1, & \text{otherwise} \end{cases}$$

Network Capacity Estimation

Approximate value of network capacity, based on CLT:

$$N_c \approx \left(\frac{-g_2+\sqrt{g_2^2-4g_1g_3}}{2g_1}\right)^2$$

Lower bound for network capacity, based on Hoeffding inequality:

$$N_c \ge \left(\frac{-g_4 + \sqrt{g_4^2 - 4g_1g_3}}{2g_1}\right)^2$$

Where:

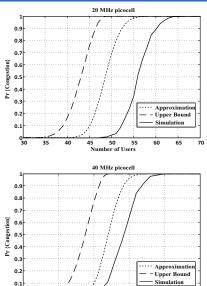
$$\begin{pmatrix}
g_1 = E[X_i] \\
g_2 = \sqrt{Var[X_i]}Q^{-1}(p_c) \\
g_3 = -\Delta F R^{-1} \\
g_4 = \log_2\left(1 + \frac{d_{max}^3}{a}\right)\sqrt{-\frac{1}{2}\ln p_c}
\end{cases}$$

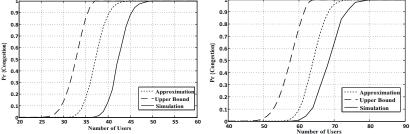
Numerical example

- ► Bandwidth $\Delta F \in \{10MHz, 20MHz, 40MHz\}$
- Carrier frequency 2GHz
- UE noise figure $N_f = 10$
- Video bit rate R = 500kbps

10 MHz picocell

Maximum distance
 d_{max} = 60m





Possible Use Cases

Three power picocells

Five weak picocells

Results:

- Congestion probability for wireless video streaming picocell network was investigated.
- Convenient majorant of function $\frac{1}{\log_2(1+x)}$ was proposed.
- Proposed expressions allows simple estimating of network capacity. However the results are applicable only for environments, where path loss factor is close to «3».

Further research:

 Generalization of obtained results for wider conditions may be a direction of further research.

Auxiliary calculations

• Calculation of X_i mean:

$$E[X_i] = \int_{0}^{d_{max}} \left[\log_2\left(1 + \frac{x^3}{a}\right) + \alpha \right] f_d(x) dx$$

$$E[X_i] = \frac{1}{d_{max}^3} \left[\int_0^{d_{max}^3} \log_2\left(1 + \frac{t}{a}\right) dt + \int_0^{d_{max}^3} \alpha dt \right] = \frac{k \ln m - 1}{\ln 2} + \alpha,$$

where
$$t=x^3$$
 , $m=1+\frac{d_{max}^3}{a}$ and $k=1+\frac{a}{d_{max}^3}$

2 Calculation of X_i variance:

$$Var[X_i] = E[X_i^2] - E[X_i]^2$$

$$E[X_i^2] = \frac{k(\ln m - 1)^2 - k}{(\ln 2)^2} + 2\alpha E[X_i] + \alpha^2$$

