

15th Conference of Open Innovations Association FRUCT

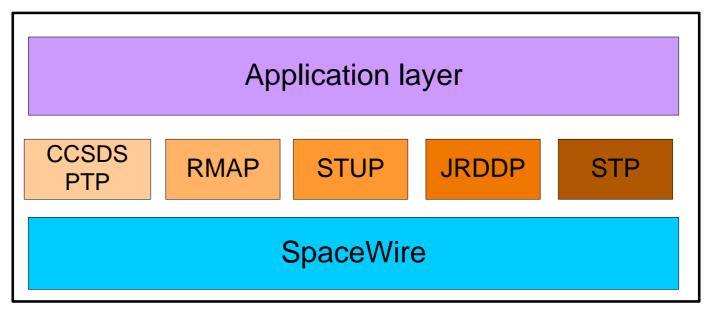
21-25 April 2014

Analysis of the Transport Protocol Requirements for the SpaceWire On-board Networks of Russian Spacecrafts

Irina Lavrovskaya, Valentin Olenev, Ilya Korobkov, Saint-Petersburg State University of Aerospace Instrumentation

Dmitry Dymov


JSC "Academician M.F. Reshetnev" Information Satellite Systems"



- SpaceWire is a data-handling network for spacecraft which combines simple, low-cost implementation, with high performance and architectural flexibility.
- SpaceWire is a network technology which does not provide transport layer services.
- Current Russian space industry demands a Transport protocol running over SpaceWire which will provide
 - reliability
 - guaranteed services
 - determinism

Transport Protocols for SpaceWire

Transport protocols intended to operate over SpaceWire:

- Remote Memory Access Protocol
- CCSDS Packet Transfer Protocol
- Serial Transport Universal Protocol
- Joint Reliable Data Delivery Protocol
- Streaming Transfer Protocol

Remote Memory Access Protocol

Primary purposes

- To configure SpaceWire switches, setting their operating parameters and routing table information.
- To monitor the status of switches and nodes
- To set application configuration registers, to read status information and to read from or write data to memory in the unit for simple SpaceWire units without an embedded processor

- connectionless transport protocol;
- □ supports path, logical and regional addressing;
- write commands
 - acknowledged or not acknowledged,
 - verified and not verified;
- provides a means of reading and writing of data into the memory by just one command (read-modify-write command);
- no timeouts;
- no flow control.

Primary purposes

- to encapsulate a CCSDS Space Packet into a SpaceWire packet
- to transfer it from an initiator to a target across a SpaceWire network and extract it from the SpaceWire packet and pass it to a target user application.
- CCSDS PTP does not provide any means for ensuring delivery of the packet nor is it responsible for the contents of the packet.

- connectionless protocol
- data transfer request by the user at any time
- variable or fixed packet length
 - minimal 7 bytes
 - maximal 65542 bytes
- unidirectional data transfer without acknowledgments
- no data retransmission mechanism
- no packet verification
- no guaranteed quality of service

Serial Transfer Universal Protocol

Primary purposes

data transfer over the SpaceWire network

- connectionless protocol
- easy to implement protocol (minimized complexity)
- □ 2 types of commands:
 - write
 - read
- no mechanisms for guaranteed quality of service

Joint Reliable Data Delivery Protocol

Primary purposes

- reliable data transmission over SpaceWire network
- packet delivery services to one or more higher-level host application processes

- connection-oriented protocol
- multiple logical connections
- reliable data delivery
- detection of missing packets
- out-of-sequence packet reordering
- buffer fragmentation and reassembly

Streaming Transport Protocol

Primary purposes

- streaming data transmission over SpaceWire network
- simultaneous transmission of multiple coherent data flows

- connection-oriented protocol;
- reliable handshake for connection establishment and teardown (3-way handshake);
- asymmetric connection (from slave to host device);
- □ multi-streaming (*up to 65535 connections*);
- □ fixed length of transmitted data;
- periodical data transfer in specified time period;
- data delivery without acknowledgements and retransmission;
- data flow control.

Protocol Comparison

Feature	RMAP	PTP	STUP	JRDDP	STP
Multiple applications	-	-	-	\checkmark	\checkmark
Data flows of different priorities	-	-	-	\checkmark	-
Data flow control	-	-	-	\checkmark	\checkmark
Configuration flexibility	\checkmark	-	-	-	-
Transport connection establishment	-	-	-	\checkmark	\checkmark
Segmentation	-	-	-	\checkmark	-
Data correctness check	\checkmark	-	\checkmark	\checkmark	\checkmark
Data sequence check	-	-	-	\checkmark	-
Scheduling	-	-	-	-	-
Data retransmission	-	-	-	\checkmark	-
Acknowledgements	\checkmark	-	-	\checkmark	-

Transport Protocol General Requirements

Requirements have been elaborated in collaboration with JSC "Academician M.F. Reshetnev" Information Satellite Systems"

Transport Interface

- General data flows passing from the Application layer:
 - control commands;
 - application process messages;
 - time codes;
 - interrupt codes and interrupt acknowledge codes.

Segmentation

- Segmentation of large messages should be performed on the Application layer.
- The target segments with the additional service information should be passed from the Application layer to the Transport layer.

Transport Protocol General Requirements

Data flows and priorities

- The data flows should have the following precedence:
 - Control commands the highest;
 - Urgent messages (in the transmission order from the Application layer);
 - Common messages (in the transmission order from the Application layer) the lowest.

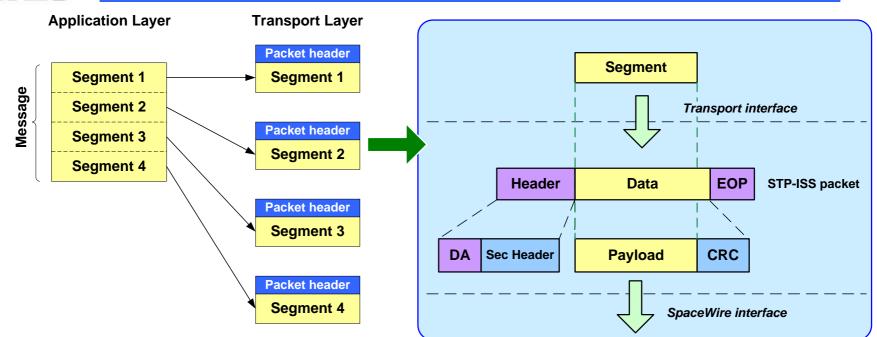
Buffering on the transmitter side

Transport protocol should comprise a separate logical buffer for each data flow priority.

Quality of Service

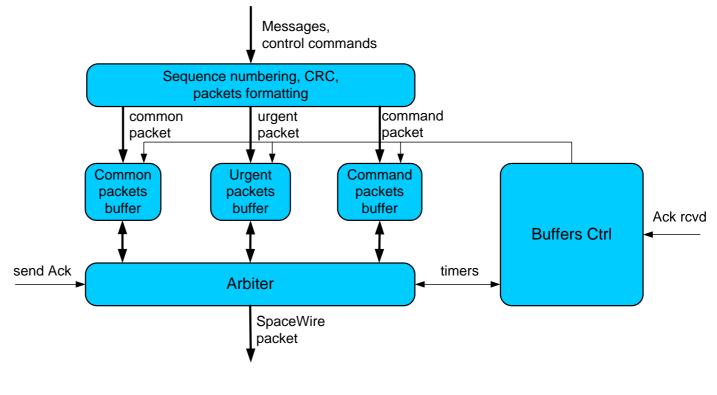
- □ Transport protocol should provide an additional fault detection level over the SpaceWire connection by means of the following mechanisms:
 - CRC checksum
 - packet sequence numbers
 - acknowledgements of the successful packet receipt
 - detection of lost packets by timeouts.

Quality of Service


SUA

Data Flow	Length	Intensity	Latency	QoS	Priority	Ack
Control commands	16 bits	\geq 1 ms	≤ 0,5 ms	priority, scheduling	1	\checkmark
Urgent messages	4 bytes 1 Kbyte 64 Kbytes	≥0,2 ms ≥5 ms ≥250 ms	≤ 0,25 ms ≤ 0,5 ms ≤ 40 ms	priority, scheduling, guaranteed	2	\checkmark
Common messages	4 bytes 1 Kbyte 64 Kbytes	≥0,2 ms ≥5 ms ≥250 ms	≤ 1 ms ≤ 1 ms ≤ 80 ms	priority, scheduling, guaranteed, best effort	3	√/-
Time codes	6 bits	≥ 60 s	≤ 0,1 ms	priority	0	-
Interrupts, interrupt acknowledges	5+1 bits	\geq 5 ms	≤ 0,1 ms	priority	0	√/-

Solutions : Segmentation and formatting


- The incoming messages should be divided into segments on the Application layer
- A special field for a secondary header holding segment number and an end of message flag
- CRC-8:
 - packet header,
 - acknowledge packets
 - control command packets
- CRC-16 for STP-ISS packet's data field. The maximum data field length is 2048 bytes.

Solutions : Buffering

- Buffers for each type of the incoming messages:
 - control commands buffer
 - urgent messages buffer
 - common messages buffer
- Sequence numbering for each packet
- Lifetime timer for setting packet's actuality
- Indication about successful or unsuccessful packet delivery

Solutions : Interfaces

Control codes interface

A separate interface for time-codes, interrupt codes and interruptacknowledge codes

Configuration interface

- Configuration parameters should be set during the device configuration stage
- Possible configuration parameters:
 - Guaranteed data delivery on/off
 - Scheduling on/off
 - Lifetime timers
 - Retry timers

Solutions : Quality of Service

Quality of service types:

- priority transmission
- guaranteed data delivery
- scheduling
- best effort
- Priority levels
 - Acknowledgment packets
 - Control command packets
 - Resent control command packets
 - Urgent message packets
 - Resent urgent message packets
 - Resent common message packets
 - Common message packets
- Retry timeouts for enabling the possibility of packet resending

Thank you!

