
Alexandra Grazhevskaja
s.grazhevskaja@ubiqmobile.com

Saint-Petersburg National Research University
of Information Technologies, Mechanics and Optics

Valentin Onossovski
v.onossovski@ubiqmobile.com

Saint-Petersburg State University

Dmitriy Timokhin
dmitriy.timokhin@ubiqmobile.com

Saint-Petersburg State University

High-level Componentization

as a Way of Efficient Server-side Logic

Implementation in Ubiq Mobile Platform

Mobilization of business applications

MBaaS emergence

• Problems in business applications’ mobilization.

 The importance of easy-to-develop backend and its mobile access.

• Emergence of MBaaS (StackMob, FeedHenry, AppEngine,

etc.).

• Insufficient abstraction level of MBaaS systems’

functionality.

Modern mobile application

• Simple application.

• Average complexity application.

• Distributed mobile application for business:

Full variety of platforms, devices and screen resolutions support

Versioned and customizable applications

High reliability and fault tolerance

Application constructors-based approach

• Simple UI - “ready to wear” components.

• Simple business logic - “screen flow”

transitions description.

Conclusion:

Development and deployment of simple applications.

Business applications - fast prototyping only.

Existing MBaaS tools-based approach

• Third-party UI libraries.

• Low-level business problems – MBaaS systems.

Conclusion:

Simple and average complexity applications.

Business logic complexity is limited by MBaaS functions abstraction

level.

Client-side – standard developments tools.

Server-side backend - MBaaS systems.

Enterprise level solution

and web services-based approach

• UI – Web technologies.

• Business logic – any abstraction level.

• Externals easy integration.

Conclusion:

Connection protocol is limited.

Resulting applications are too “heavy”.

No content generation and server-side event management.

Web UI is inefficient and poor.

Business logic backend - enterprise-level solution.

Connection protocol – web services.

Our proposal - “High level integration” approach

Business logic backend – server components:

• Big, universal, highly integrated, customizable.

• Any abstraction level.

• “Building blocks” encapsulating self-sufficient

fragments of business logic.

Our proposal -“High level integration” approach

• Complex business logic of any abstraction level.

• Server components implement business process items.

• Integration of any business verticals.

• No unnecessary traffic consumptions.

• Creating components “in one click”.

Opportunities of enterprise-level approach + usability of MBaaS.

• Platform-level support of relatively big server-side

independently running components.

• Mechanism of components’ interaction.

• As addition - IDE-level support of integrated

components.

Basic requirements to the “host” environment

Platform features:

• Ultra-thin client-based architecture.

• Safe disconnections – saving users’ sessions.

• Cross-platform deploy.

• Applications: custom and services.

• Server core:
Communication with mobile devices

Applications’ management and interactions

• Services over server core through API.

• Plug-in for Microsoft Visual Studio.

Implementation in Ubiq Mobile platform

Implementation in Ubiq Mobile platform

Server core

Auth.
service

Dispatcher
service

Database
service

Componentization of users’ interactions:

• Authentication;

• Interactions’ management;

• Storing persistence data.

Logical model of users’ interactions: users and dialogs.

Case study - Dispatcher Component

• One Dispatcher – one application type.

• DispatcherAPI object - locally instantiated in application.

• API methods wrap messaging to Dispatcher.

• Result – meaningful data or error code.

Dispatcher-application interaction

DispatcherAPI functionality:

• User authentication and registration;

• Obtaining information about users;

• Dialogs processing;

• Inter-user communications.

DispatcherAPI

Dispatcher usage

• High-level integrated “building block” for server

side backend.

• Libraries of components – fragments of business

processes.

• Effectiveness of particular implementation.

• Components’ extending directions.

• Not Ubiq-Mobile locked.

Conclusion

Thank You
for

Your attention!

