
Storage Efficient Backup
of Virtual Machine Images

Artur Hulestki, SPbAU
(hatless.fox@gmail.com)

Motivation

● Backups have to be done frequently to
minimize change of data loss

● Virtualization technologies are widеly used
by cloud services

● Virtual disk consumes most of the storage
Goal:
 Minimize storage used by virtual disk backup 1

Existent Approaches

● Backup organization:
differential and incremental backups

● Features of virtualization software:
VMware CBT; backup compressing in VirtualBox, etc.

● Proprietary Software:
Veam Backup & Replication, EMC Avamar,
Acronis Backup & Recovery, etc.

2

Back to Problem...

● Cloud services provide many similar
instances of virtual machines

● Frequent backups have to be performed for
all these instances

● It is not common for the VM instance to use
entire virtual disk space

3

Unused Block Compression

Analysis of data stored on disk may lead better
compression.
Idea: Want to analyze underlying File System
to determine which blocks are actually used
and store only them.
Drawback: Unused blocks are wiped.

4

Plan

1. UBC adoption
2. Ext parsing
3. NTFS parsing
4. Incremental backups

5

UBC adoption

6

UBC library summary

Supported File Systems:
● Ext[3, 4]
● NTFS

Assumption: FS structures are in consistent
state

7

Ext File System
● Storage is split on block groups
● Block group meta data is stored in Global Descriptor

Table
● Used blocks info is stored in bitmap per-group

8

Ext Parsing

Unsupported modes: 64-bit
9

NTFS
● Everything is stored in “files”
● Master File Table contains file descriptors
● File meta-data is stored in descriptors using attributes
● Usage bitmap of entire disk is stored in special file

A

NTFS Parsing

B
Looks simple but ...

NTFS ambiguity

Ambiguities related to $MFT reading:
● Compressed core file system files
● Custom attribute types (value of $DATA)
● Multi-record MFT entries (fragmented $MFT)

Reason: No open specification/implementation
from Microsoft

C

Incremental
 Backups

Backups

D

Naive restore (patching approach):
 find the most recent snapshot
 apply all later incremental backups

Sketch of Restore Algorithm

init unrestored bitmap (as filled) /* unrstd - blocks that */
init target disk image /* have to be restored */
while not unrestored bitmap empty
 get next backup /* bu from LIFO container */
 if incremental backup
 update changed blocks /* unrstd &= !bu.ch_unusd */
 update unrestored bitmap
 if snapshot backup
 update blocks from snapshot
 clear unrestored backup

Benefits:
 Every used block is written only once
 (“patching” approach doesn’t provide such guarantee)

Core Ideas
● Incremental backups

are applied in reverse
order

● Progress is tracked
with a bitmap

E

Summary
Implemented:
● Library (diskube) that allows to incorporate UBC approach
● Scaffolding for testing: command line tool, tiny DSL for disk image creation

and configuration

Future:
● Add support for other file systems (e.g. XFS)
● Implement PoC adaptor (e.g. for VirtualBox images)
● Implement and measure proposed algorithm for restore

F

Q&A

