

A Hybrid Peer-to-Peer Recommendation System Architecture Based on Locality-Sensitive Hashing

Alexander Smirnov, Andrew Ponomarev

St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences (SPIIRAS)

Motivation

- Most of the modern recommendation system designs are centralized. User data are collected and stored at one central point (server machine of server cluster)
- Advantages:
 - Broad spectrum of user preference models
 - Offline analysis by service providers
- Disadvantages:
 - Quandary about rights on preference data
 - Profile slicing
 - Single point of failure

Motivation

- Decentralized (peer-to-peer) recommendation system: no central database.
- Approach to decentralization: *«Omnia mea mecum porto»*
- Advantages:
 - All user data are on user's device
 - No profile slicing
 - No single point of failure
 - Improved privacy
- Disadvantages:
 - Severe limitations on prediction models
 - Network traffic and resource balancing needed
 - Likely security issues

• Goal: recommend items without exposing profile details

User-centric recommendation system

Locality-sensitive hashing: idea

- Locality-sensitive hashing (LSH) a widely used technique for probabilistic solution of k Nearest Neighbors problem. The idea is to hash multidimensional objects in such a way that similar objects are likely to have the same hash value.
- Formally, let d₁ < d₂ be two distances according to some measure d. A family F of functions is said to be (d₁, d₂, p₁, p₂)-sensitive if for every f in F:
 - If $d(a, b) \le d_1$, then $\Pr[f(a) = f(b)] \ge p_1$
 - If $d(a, b) \ge d_2$, then $\Pr[f(a) = f(b)] \le p_2$
- Random projections method for cosine distance (d)*
- AND-composition and OR-composition

*) P.Indyk, R. Motwani "Approximate Nearest Neighbors: Towards Removing the Curse of Dimensionality"

Locality-sensitive hashing: recommendations

- Collaborative filtering (CF) system recommends items based on ratings assigned by other users
- User profile vector of normalized ratings $r_{uj} \in [-1,1], j \in \{0, M\}$, where *M* is the number of items
- Algorithm idea:
 - Preparation: Encode each user *u* profile as *L b*-dimensional hash values h_i of and put each pair (h_i, u) into corresponding hash table HT_i
 - Recommendations search for user v:
 - Find values of *L* hash functions of *v*'s profile
 - Look up each hash value in corresponding table
 - Use found user identities to calculate exact similarities
 - Use top-rated items of similar users as recommendations for *v*

Distributed locality-sensitive hashing

- Distributed Hash Table (DHT) a structured Peer-to-Peer architecture allowing to maintain a distributed hash table with fast lookups
 - e.g., Chord: O(log n)
- L hash tables used in LSH nearest neighbor search are transformed into one distributed hash table where key is a tuple (i, h_i)
- Search for nearest neighbors is transformed into lookup in DHT of all keys (*i*, *h_i*), where *h_i* = *f_i*(*Profile_v*), *i* ∈ {1..*L*}

Distributed locality-sensitive hashing

Shared state

- Problem! Need to share hash functions between nodes.
- Solution: breaking Peer-to-Peer design by the Master node
 - Not used in recommendation scenarios
 - No private data

Anonymization technique

- Original DHTs have security vulnerabilities:
 - Look up interception
 - Routing corruption
- Secure DHTs:
 - e.g. Octopus^{*}

*) Q. Wang, N. Borisov "Octopus: A Secure and Anonymous DHT Lookup"

Architecture overview

Experiments

- Dataset: MovieLens 100k (943 users on 1682 items)
- Technique: 80/20 split
- Quality indicator: recall at fixed recommendations count

Conclusion

- Main objectives
 - ✓ User-centric distributed recommendation system
 - Limited ratings disclosure
- Open questions
 - Shared state in pure peer-to-peer design (epidemic protocols?)
 - Automatic parameters tuning
 - Context-awareness
 - High churn networks

and finally...

Thank you!

Questions are welcome!

Table of Contents

- Motivation
- Locality-sensitive hashing
- Distributed locality-sensitive hashing
- Shared state
- Anonymization technique
- Overall architecture
- Conclusion