

Monocular Visual Odometry and 3D Reconstruction

Alexandr Prozorov Vladimir Volokhov Andrew Priorov

Yaroslavl State University, Russia

15th FRUCT, St. Petersburg, 21-25 April

Computer Stereo Vision Task

What is the aim? Retrieving 3D information, and structure of an object.

What we have?

Two images from different viewpoints that can be put in correspondence

Two Main Problems

The correspondence problem To find pairs of matched points

•The reconstruction problem To get a 3D model of the scene

Stereo Matching Algorithms

How can we get a set of matched points?

- match "features" and interpolate
 match all pixels within a window
 using optimization:
 - •iterative updating
 - dynamic programming
 - energy minimization
 - •graph algorithms

The Correspondence Problem

$$D = \{?, ?, 2, 2, 2, 2, 1, 1, 1, ?, ?, 3, 3, 3, 3\}$$

$$f_{c} = \sum_{xL=0}^{W-1} (D(xL, xR))|_{match} + \sum_{xL=0}^{W-1} (\beta)|_{occl} + \sum_{xR=0}^{W-1} (\beta)|_{occl} + \sum_{xR=0}^{W-1} (\alpha, (D(xL) - D_{-1}(xL))).$$

Dissimilarity function

Occlusions

Adjacency

Hierarchical Stereo Calculation

What a problem it solves?

Ambiguous correspondence of points between two images leads to inconsistent interpretation of the scene

Results on Tsukuba Dataset

a),b) Tsukuba stereo pair c) Ground truth d) Simple DP method
 e) Using hierarchical structure with 3 layers f) Using hierarchical structure with 6 layers

Feature Tracking

Domains for feature tracking: a) weak, b) strong

Optical Flow Evaluation

Weighted Implementation of Lucas-Kanade method:

$$\begin{bmatrix} V_X \\ V_Y \end{bmatrix} = \begin{bmatrix} \sum w_i I_X(p_i)^2 & \sum w_i I_X(p_i) I_Y(p_i) \\ \sum w_i I_X(p_i) I_Y(p_i) & \sum w_i I_Y(p_i)^2 \end{bmatrix}^{-1} \begin{bmatrix} -\sum w_i I_X(p_i) I_I(p_i) \\ \sum w_i I_Y(p_i) I_Y(p_i) \end{bmatrix}$$

Optical Flow Evaluation

Adaptive elimination of errors:

Found vectors

Errors

Result

Results

Stereo Correspondence 3D Reconstruction

Application: Indoor Navigation

Application: 3D Mapping

Combining obtained datasets into a global consistent model

Application: Aerial Photography

Monocular Visual Odometry and 3D Reconstruction

Alexandr Prozorov Vladimir Volokhov Andrew Priorov

Yaroslavl State University, Russia

15th FRUCT, St. Petersburg, 21-25 April