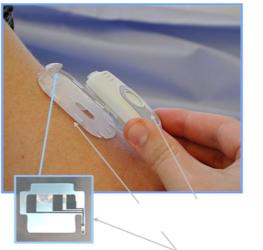


Security and Smartness for Medical Sensor Networks in Personalized Mobile Health Systems

I. Nikolaevskiy, D. Korzun, **Andrei Gurtov** Aalto University 23.04.2014 FRUCT'15

Motivation for Medical ICT


Population gets older, high costs of medical care

Insulin pumps, Implanted Cardio Defibrillators could be monitored remotely

Threatening state of security in current medical devices

> Demonstrated remote triggering of heart shock

How to combine security with limited hardware and battery capabilities?

Two Related Devices for Diabetics

Continuous Glucose Monitors (CGM)

- Small wire in tissue to measure electrical elements of fluid
- Graphs sugar values over time
- Transmits data blindly over wireless
- Better than urine tasting \bigcirc

Insulin Pump

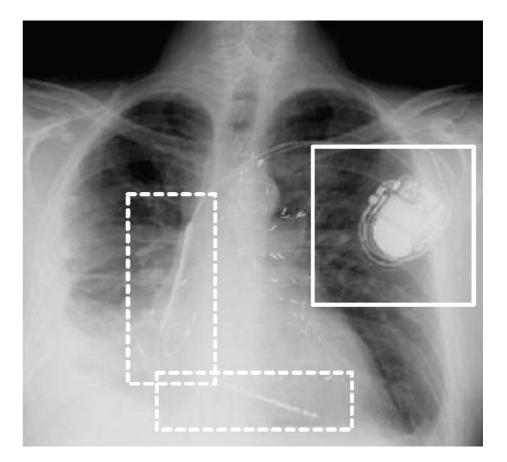
- Insulin delivered through tubing attached to body
- Tubing replaced every 3 days
- Special USB dongles used to program Insulin Pumps and download history data
- Devices not designed to be updated. No way of patching. 5+ year lifespan.

Both Devices Hacked by J. Radcliff

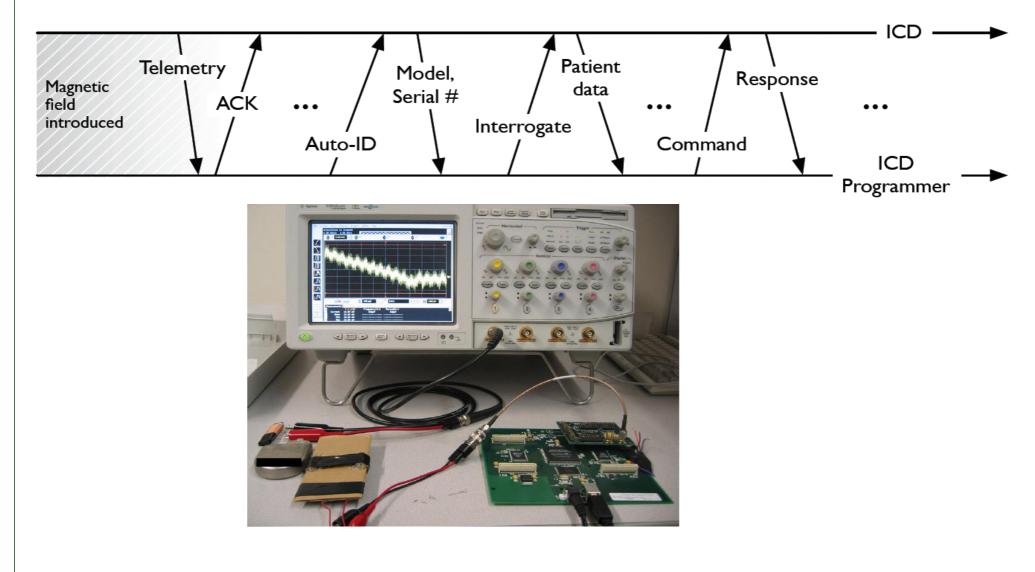
- Using patents and FCC specs
- Publicly available equipment
- Acquire "root" access to devices up to 30 m
- Requires finding out device serial number
- No built in security!

Enabling logging gives out packet structure Currently some human participation is needed, in future 'Artificial Pancreas' project will be bring CGM-pump automatic connection

Hacker Shows Off Lethal Attack By Controlling Wireless Medical Device

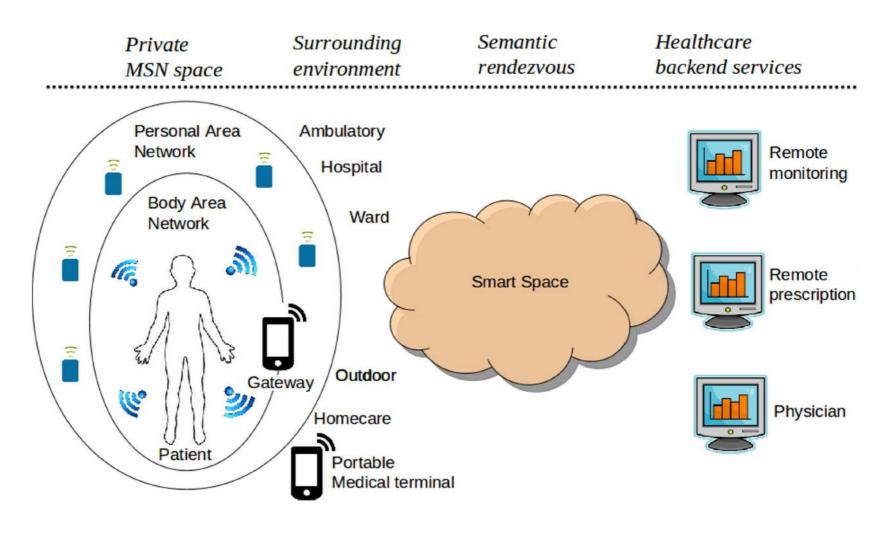

Barnaby Jack has discovered a way to scan a public space from up to 300 feet away, find vulnerable pumps made by Minneapolis-based Medtronic Inc., and force them to dispense fatal insulin doses. Jack doesn't need to be close to the victim or do any kind of extra surveillance to acquire the serial number, as Jay Radcliffe did.

Demonstrated Attack on IMDs


Pacemakers and Implantable Cardiac Defibrillators: Software Radio Attacks and Zero-Power Defenses

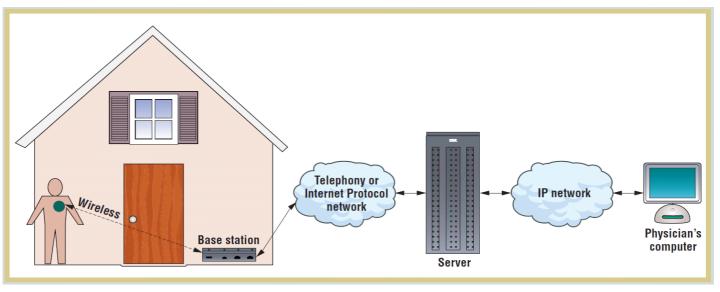
Daniel Halperin, Thomas S. Heydt-Benjamin, Benjamin Ransford, Shane S. Clark, Benessa Defend, Will Morgan, Kevin Fu, Tadayoshi Kohno, and William H. Maisel IEEE Symposium on Security and Privacy, May 2008

Decoded Plain-text Communication Protocol



Demonstrated Attacks on Implanted Cardio Defibrillator

	Commercial	Software radio	Software radio	Primary
	programmer	eavesdropper	programmer	risk
Determine whether patient has an ICD	~	 ✓ 	 ✓ 	Privacy
Determine what kind of ICD patient has	~	 ✓ 	 ✓ 	Privacy
Determine ID (serial #) of ICD	~	 ✓ 	 ✓ 	Privacy
Obtain private telemetry data from ICD	~	 ✓ 	 ✓ 	Privacy
Obtain private information about patient history	~	 ✓ 	 ✓ 	Privacy
Determine identity (name, etc.) of patient	~	 ✓ 	 ✓ 	Privacy
Change device settings	 ✓ 		 ✓ 	Integrity
Change or disable therapies	 ✓ 		 ✓ 	Integrity
Deliver command shock	~		~	Integrity

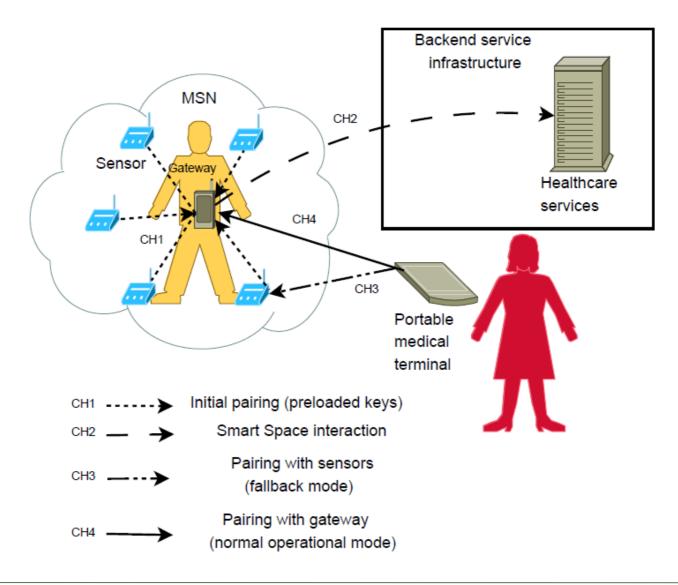


Medical Smart Space Architecture

Remote Monitoring Architecture

Hybrid IPless/IP architecture based on Host Identity Protocol (HIP)

Use of a mobile phone as a secure gateway for connecting personal devices to Internet


Secure key exchange

Trust management and revocation infrastructure

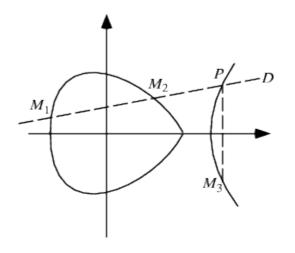
Emergency access; Secure key storage; Preserving battery

Communication Channels

Properties of the Channels

	Assumptions	Requirements	Solution
CH1: Gateway	The channel is established		Preshared keys, installed during devices con-
to sensors	in the controlled environment		figuration by medical personnel or by man-
	when devices are installed		ufacturer
CH2: Gateway	The gateway is a powerful	Strong security level	Standard Host Identity Protocol (HIP) [9]
to backend	enough device; the gateway		
	has an Internet access		
CH3: PMT to	Sensors are constrained de-	Lightweight key exchange	Custom lightweight key exchange protocol,
sensors	vices	scheme; Mutual authentica-	as defined in section 3.2
		tion	
CH4: PMT to	TH medical terminal has only	Mutual authentication	The same key exchange scheme as in channel
Gateway	a short range radio interface		CH3

Host Identity Protocol (HIP) in a Nutshell


- HIP Base Exchange (BEX) end-to-end key exchange protocol
- 4-way handshake (I1, R1, I2, R2 packets):
 - Mutual authentication with DSA/RSA signatures
 - Protection against DoS with puzzles
 - Key exchange with Diffie-Hellman (DH)
- HIP Diet Exchange (DEX) is a lightweight version
 - No signatures fixed Elliptic curve DH (ECDH) keys are used instead
 - No hash functions

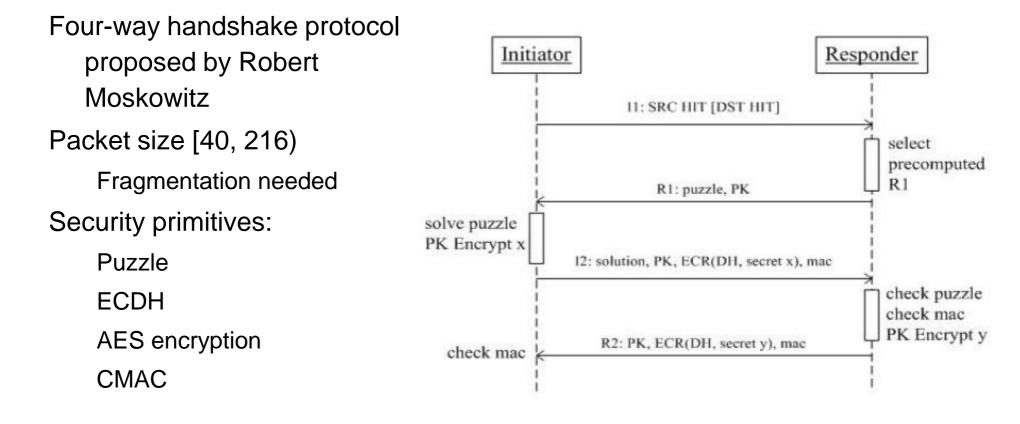
Duration of HIP Base Exchange (BEX)

Basic HIP uses heavyweight RSA/DSA cryptography Association establishment can take up to a second even on regular PC Small devices have very restricted capabilities The use of Elliptic Curve Cryptography (ECC) is almost mandatory

Authentication	Session Key	BE
RSA1024	DH1536	275 ms
RSA1024	ECDH192	$39\ ms$
ECDSA160	ECDH192	$33\ ms$
RSA2048	DH2048	$747\ ms$
RSA2048	ECDH224	$187\ ms$
ECDSA224	ECDH224	$129\ ms$

Security Properties of ECC and HIP BEX

ECC offers same cryptographic strength with almost order of magnitude less space


HIP BEX requires signature operations and Diffie-Hellman key exchange

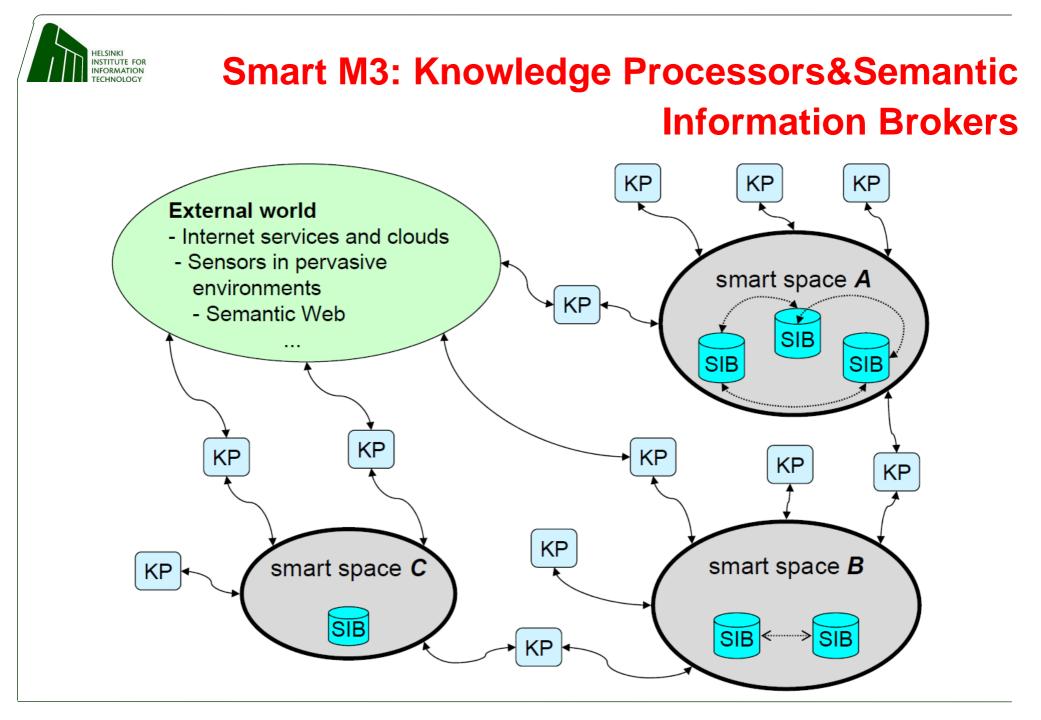
Security level	ECC	$\mathbf{DSA}/\mathbf{RSA}$
80	160	1024
112	224	2048
128	256	3072
192	384	7680
256	512	15360

Message	Initiator	Responder
I1	-	-
R1	verify, DH_compute_key	sign
I2	sign	verify, DH_compute_key
R2	verify	sign
CLOSE	sign	verify
CLOSE_ACK	verify	sign
Total	$2 \times T_{sign} + 3 \times T_{verify} + T_{dh}$	$3 \times T_{sign} + 2 \times T_{verify} + T_{dh}$
Only Base Exchange	$T_{sign} + 2 \times T_{verify} + T_{dh}$	$2 \times T_{sign} + T_{verify} + T_{dh}$

HIP Diet Exchange (DEX)

Security analysis of HIP DEX

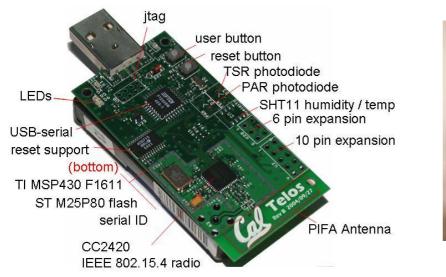
Protection against six attack models


Radio jamming:	None
Packet DoS attack:	Puzzle
Replay attack:	Nonce + CMAC
Spoofing/Sybil attack:	Password authentication
Message eavesdropping:	AES encryption
Man-in-the-middleware/wormho	ole: ECDH

Proposed Authentication Protocol Responder Initiator **HIP DEX + implicit certs** 11: Generate I Select K (puzzle difficulty) R1: I, K, Cert_R = { P_{R} , ...} Find J: $[CMAC(I, HIT_I|HIT_R|])]_{\kappa} = 0$ $Q_R := SHA1(Cert_R)*P_R+Q_{CA}$ SK := DI*QR = DI*DR*GGenerate X Encrypt X Calculate MAC using SK I2: J, Certi={Pi, ...}, Encr(SK, X), MAC Check [CMAC(I, HIT_I|HIT_R|])] $\kappa = 0$ $Q_I := SHA1(Cert_I)*P_I+Q_{CA}$ $SK := D_R * O_I = D_R * D_I * G$ Check MAC Decrypt X Generate Y Encrypt Y Calculate MAC using SK Derive keys from XIY R2: Encr(SK, Y), MAC

I

Decrypt Y Check MAC Derive keys from X|Y


Knowledge Processors in Medical Smart Space

KP Type	Device	Role
MSN data	Gateway,	KP collects health data from the pa-
$\operatorname{collector}$	PMT	tient and publishes to its smart space.
Service	Backend	KP activates appropriate service and
	server	mediator KPs to construct the service
		when there are clients. Its outcome is
		semantically represented in the smart
		space for client KPs.
Mediator	Backend	KP runs appropriate data process-
	server	ing over its database and makes the
		outcome semantically represented the
		smart space.
UI agent	Gateway,	KP shows results from the healthcare
	PMT	services to the user based on current
		situation in the smart space and at
		the patient side.

Device Characteristics

	-		
Resource	TelosB	MAXQ2010	$\mathrm{Imote2}$
RAM	10kB	$2 \mathrm{kB}$	256 kB
ROM	48kB	$64 \mathrm{kB}$	32 MB
CPU	16-bit	16-bit	32-bit
Freq	8Mhz	1Mhz	13-416Mhz

Processing Time and Energy Consumption of Protocol Messages

Operation	Duration	Current	Energy
I1 proc. (sensor)	$3.91 \mathrm{ms}$	2.2 mA	$0.03 \mathrm{~mJ}$
R1 proc. (PMT)	$50.13 \mathrm{\ ms}$		
I2 proc. (sensor)	$10.89 \mathrm{\ s}$	2.2 mA	$79.1 \mathrm{~mJ}$
ECDH key gen.	$5.41 \mathrm{\ s}$	2.2 mA	$39.3 \mathrm{mJ}$
ECQV key proc.	$5.35 \mathrm{\ s}$	2.2 mA	$38.8 \mathrm{~mJ}$
R2 proc. (PMT)	$0.23 \mathrm{\ ms}$		
Data transmission	$13.8 \mathrm{ms}$	19.4 mA	0.9 mJ
Total handshake	$10.95~{\rm s}$		$80.03 \mathrm{~mJ}$

Typical LR44 battery capacity of 150 mAh will be enough for more than 20,000 handshakes.

Standardization Status

New Task Group IEEE 802.15.9

Key management protocol for 802.15.4 and .7 links

HIP DEX, IKEv2, PANA, etc

Best Current Practice specification are expected within a year

Internet Engineering Task Force (IETF)

Standards-track HIP RFCs

Developing DEX

New WGs: DICE, ACE

Internet Research Task Force (IRTF)

Published HIP experiment report

Related work on Internet-of-Things

Conclusions

- Designed an integrated system consisting of medical sensors, terminal readers, smart space processors
- Using state-of-the-art security protocols ECC
- Support of implicit certificates in HIP Diet Exchange (HIP DEX)
- Prototyped using Telos B sensors
- Secured interactions within Smart M3 system