

Development of the Transport Layer Scheduling Mechanism for the Onboard SpaceWire Networks

Valentin Olenev,

Elena Podgornova, Irina Lavrovskaya, Ilya Korobkov, Nadezhda Matveeva

Saint-Petersburg State University of Aerospace Instrumentation

Introduction (1/2)

Modern onboard networks need to schedule the traffic to avoid conflicts with simultaneous network resource usage and to reduce the network capacity.

Most of scheduling mechanisms for packet-switching and IP networks are implemented by means of store-and-forward switches.

It is not suitable for SpaceWire networks.

According to SpaceWire standart, switches support wormhole routing without packet buffering.

Introduction (2/2)

There is no transport layer protocol officially released for SpaceWire that provides scheduling.

The SpaceWire-D protocol prototype has such a scheduling mechanism. But this protocol is not available for the public.

Scheduling

- Network should synchronize the schedule among all the nodes (by using SpaceWire time-codes);
- There should be a schedule for the whole SpaceWire network.

Scheduling mechanism based on the SpaceWire-D

The simplified SpaceWire network model in SystemC

- SystemC interface

Simulation

- Data transmission speed: 200 Mbit/s;
- Time-slot: 500 μs;

Comparison of data transmission results with scheduling mechanism and without it

Transmitted packets distribution by nodes

Adapted scheduling mechanism disadvantages

- It depends on a time-code number (SpaceWire-D – only 64 time-slots).
- Node synchronizes and updates time-slot timer too frequently.
 - additional computational resources from a node;
 - additional channel capacity;
 - slow down data transmission (and even block it) because time-codes have higher priority than data;
 - some satellite equipment has high-precision clocks that does not need frequent synchronization.

New version of scheduling mechanism (1/2)

New scheduling mechanism's distinctions:

- synchronization is performed once in an *epoch*;
 - the epoch consists of N time-slots.
- new scheduling mechanism does not depend on a timecode number.

New version of scheduling mechanism (2/2)

Comparison of the simulation results for adapted scheduling mechanism modeling and new scheduling mechanism modeling

Transmitted packets distribution by nodes

Conclusions

We got the new transport layer scheduling mechanism for the SpaceWire networks. This new scheduling mechanism has following advantages:

- it prevents conflicts of network resources usage;
- it decreases the network capacity;
 - mean-square deviation of packets number decreases from 6.04 to 5.51
- it allows to increase network bandwidth;
 - number of transmitted time-codes decreases from 4224 to 34 (for 64 ms modeling)
- it provides uniform data transmission;
- it gives more flexibility in schedule creation.
 - It doesn't depend on a time-code numbers.

The developed scheduling mechanism is planned to be included into the new transport protocol for the SpaceWire networks.

Thank you!

valentin.olenev@guap.ru Ph.D., Head of the EmCoMobile Laboratory St.-Petersburg State University of Aerospace Instrumentation

