Fast Pulmonary Function Test Using Onboard Smartphone Equipment

Alexander Borodin, Anton Shabaev, Irina Shabalina

Petrozavodsk State University Department of Computer Science

This project is supported by grant KA432 of Karelia ENPI - joint program of the European Union, Russian Federation and the Republic of Finland

16th FRUCT conference October 27–31, Oulu, Finland

CardiaCare

Respiratory diseases

Facts by WHO

- Approx. 64 million people suffered from COPD (and 235 million from asthma) worldwide in 2004
- Approx. 5% of deaths every year
- Not curable but treatment can slow the progress of the disease

Risk factors

- Air pollution
- Occupational dusts and chemicals
- Tobacco use
- Unhealthy diet
- Physical inactivity

Pulmonary Function Tests

- Spirometry
- Peak flowmetry
- Body plethysmography
- Nitrogen washout
- Ergospirometry

500

Spirometry Test

Noninvasive diagnostic for screening of pulmonary function

- What is the size of lung volume which can be inspired or expired
- What is the time it takes to exhale the volume and what is the flow rate?

Testing: VF ECG record

Algorithm 1 Diagnosing obstruction or restrictive/mixed abnormalities

```
if FVC > LLN then
  if FEV_1 / FVC \leq LLN \& then
    diagnose normal case
  else
    diagnose obstruction
  end if
  if FEV<sub>1</sub> / FVC > 0.55 \& FVC < 85\% then
    diagnose restrictive or mixed abnormalities
  else
    diagnose obstruction
  end if
end if
```

¹from "Diagnostic Spirometry in Primary Care. Proposed standards for general practice...-by M. L. Levy et. al.

cs.karelia.r

Lung Capacity

Forced volume capacity²

 $FVC_m = 0.1524 \times height - 0.0214 \times age - 4.6500$ $FVC_f = 0.1247 \times height - 0.0216 \times age - 3.5900$

Forced expiratory volume after one second

 $FEV1_m = 0.1052 \times height - 0.0244 \times a - 2.1900$ $FEV1_f = 0.0869 \times height - 0.0255 \times a - 1.5780$

²from "Lung Capacity Estimation Through Acoustic Signal of Breath" by Ahmad Abushakra and Miad Faezipour

CardiaCare

nac

Estimated Lung Capacity

Forced volume capacity assessment based on breath sound analysis³

$$FVC_{m} = \frac{15e}{100}(0.1524 \times height - 0.0214 \times age - 4.65) \times t$$
$$FVC_{f} = \frac{15e}{100}(0.1247 \times height - 0.0216 \times age - 3.5900) \times t$$

Here t is the average time duration of exhale and inhale and e is the signal energy.

 $^3 {\rm from}$ "Lung Capacity Estimation Through Acoustic Signal of Breath" by Ahmad Abushakra and Miad Faezipour

Alexander Borodin

CardiaCare

naa

7 / 8

FRUCT 14

Current Results and Future Plans

- Experiments with breath sound analysis acquired from laptop microphones have been done.
- UI for mobile was designed to help a patient to articulate for better sound produce.
- Wide experiments with colleagues from department of pulmonary deseases
- Android app is planned to be developed.