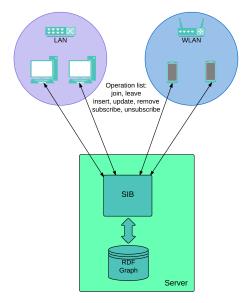
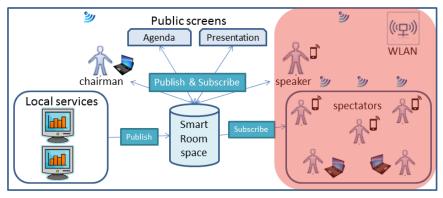


Petrozavodsk State University Department of Computer Science


Andrey Vdovenko, Dmitry Korzun Active Control by a Mobile Client of Subscription Notifications in Smart Space

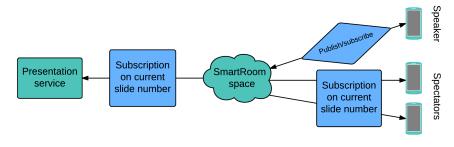
The work is supported by project # 1481 from the basic part of state research assignment # 2014/154 and by project # 2.2336.2014/K of the Ministry of Education and Science of the Russian Federation.


16th FRUCT Conference October 30, 2014, Oulu, Finland

Smart-M3 Platform

- Implements infrastructure of Smart Spaces for knowledge sharing by agents (M3-agent, knowledge processor, KP)
- SIB: Semantic Information Broker for maintenance of shared content
- RDF data representation model: semantic interoperability and ontology-driven programming

SmartRoom System



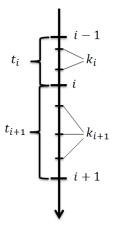
Many services (composition, personalization) informational, control, collaborative work,

- Participation of many users (user can be indoor and outdoor)
 - → Many (mobile) clients running and accessing services
- Users come with own devices
 - → Many mobile platforms, IoT-like device diversity

Publish/subscribe in Smart Spaces

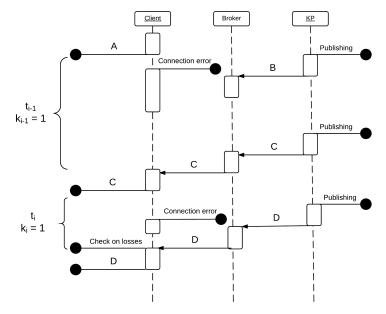
- Subscription process:
 - a publisher produces some informational content
 - subscriber is interested in certain content
 - a change can affect many subscribers
 - content can be changed by different publishers
- For Smart-M3:
 - subscription requires its client to establish a network connection
 - changes are controlled on the smart space side
 - the corresponding notifications are sent to the client (passive)

Delivery guarantee problem


- Subscription Problems:
 - Broker (SIB) doesn't check delivery for already sent notifications
 - In mobile clients:
 - the subscription is affected by losses of notifications
 - fault tolerance is essentially affected due to the specifics of wireless network communication (Wi-Fi, 3G, etc.)
- Solution:
 - Active control by a mobile client itself for subscription notifications
 - Additional checks allows mitigate the effects of notification losses

Subscription Parameters at the Client Side

The tradeoff of passive and active notifications:


- Notifications arrive sequentially to the client
- *i* is the sequence number of a notification
- t_i is the time interval
- k_i is the observed number of losses
- λ = λ_i = k_i/t_i is the instant rate for the notification loss

 \rightsquigarrow The client is interested in minimizing λ .

FRUCT16

Subscription process example

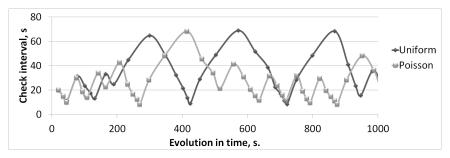
Mathematical Model

With active notifications, *t_i* becomes a control variable for the client
Let the client have observed no losses in *t_{i-1}*, i.e., *k_{i-1}* = 0:

$$t_i = t_{i-1} + \delta \tag{1}$$

Let the client have observed certain losses in t_{i-1} , i.e., $k_{i-1} > 0$:

$$t_i = \alpha t_{i-1} + (1 - \alpha) \frac{t_{i-1}}{k_{i-1} + 1}$$
(2)


Combining (1) and (2) we construct the recurrent system

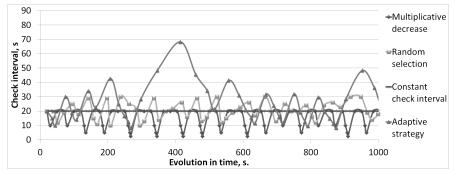
$$t_{i} = \begin{cases} t_{i-1} + \delta & \text{if } k_{i-1} = 0, \\ \frac{1 + \alpha k_{i-1}}{k_{i-1} + 1} t_{i-1} & \text{if } k_{i-1} > 0. \end{cases}$$
(3)

Experiments: Adaptive Strategy

Behaviour of strategy for different distribution of notifications losses:

Parameter	Value	Description	Our strategy:		
Uniform distribution		$k \in [at, bt]$			
а	0	$k_i \in [at_i, bt_i]$ uniformly at random	$l_{i-1} + 0$		
b	0.1	a random	$t_i = \begin{cases} t_{i-1} + \delta \\ \frac{1 + \alpha k_{i-1}}{k_{i-1} + 1} t_i \end{cases}$		
Poisson distribution		$k_i P(\lambda t_i)$ for $\lambda > 0$	$\left(\frac{k_{i-1}+1}{k_{i-1}+1} \right)^{t_i}$		
λ	0.05	$ \mathbf{x}_i (\mathbf{x}_i) 0 \mathbf{x} \ge 0$			
			$\alpha = 0.5, \ \delta = 20$		

F	R	U	C	Т	1	6

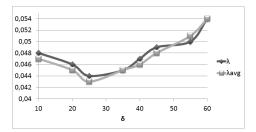

Experiments: Compared Strategies

Strategy		Description		
Parameter	Value	Description		
Adaptive strategy		$\alpha = 0.5$ trades off previous and recent		
α	0.5	observations equally. $\delta=$ 20 s is equal to		
δ	20	the interval for one loss on average.		
Multiplicative decrease		When $k_{i-1} > 0$ the check interval t_i is		
factor 0.5		reduced by 2. If $k_{i-1} = 0$ then set $t_i = t_0$.		
Random selection		Random strategy when t_i is selected		
а	10	from interval (a, b) at random.		
b	30	(a, b) at random.		
Constant check interval		The check interval is always set $t_i = t_0$.		

The initial value is $t_0 = 20s$, which confirms the intuition that one loss happens on this interval on average

FRUCT16

Experiments: Comparison


Metric	Multiply decrease	Random selection	Constant interval	Adaptive strategy
$k_{\text{avg}} = \frac{1}{n} \sum_{i=1}^{n} k_i \text{ (min)}$	0.59	1.19	0.89	1.23
$t_{\text{avg}} = \frac{1}{n} \sum_{i=1}^{n} t_i \text{ (max)}$	14.23	19.87	20	28.8
$\lambda = k_{\rm avg} / t_{\rm avg} ({\rm min})$	0.042	0.06	0.045	0.041
$\lambda_{\text{avg}} = \frac{1}{n} \sum_{i=1}^{n} \frac{k_i}{t_i} (\min)$	0.078	0.06	0.045	0.043

FRUCT16

11/13

Experiments: Variation of δ in the Adaptive Strategy

Parameters	Variation			
δ	10	20	40	60
Metric	Values			
$k_{\text{avg}} = \frac{1}{n} \sum_{i=1}^{n} k_i \text{ (min)}$	1.06	1.14	1.77	2.16
$t_{\text{avg}} = \frac{1}{n} \sum_{i=1}^{n} t_i \text{ (max)}$	22.01	24.76	32.6	43.86
$\lambda = k_{\rm avg} / t_{\rm avg} \ ({\rm min})$	0.048	0.046	0.047	0.054
$\lambda_{\text{avg}} = \frac{1}{n} \sum_{i=1}^{n} \frac{k_i}{t_i} \text{ (min)}$	0.047	0.045	0.046	0.054

- Smaller values for δ leads to less losses
- Bigger values reduce the load the client shifts to the SIB

Conclusion

- Studied the problem of subscription fault tolerance
- Proposed a simple mathematical model for active control
- Start to apply the model in real settings

Thank you for attention

E-mail: vdovenko@cs.karelia.ru