

Smart-M3-Based Robot Interaction in Cyber-Physical Systems

Nikolay Teslya^{*†}, Sergey Savosin^{*}

*St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences, St. Petersburg, Russia

[†]ITMO University, St. Petersburg, Russia

Outline

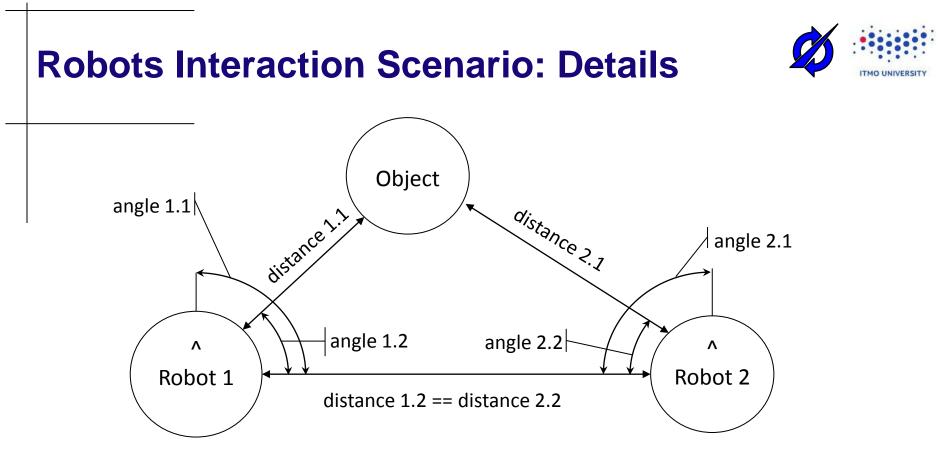
- Introduction: Cyber-physical Systems
- Robots Interaction Scenario: searching objects with two robots
 - Robotic Kits for robot constructing
 - Robotic Kits: control block configuration, leJOS
- Robots Interaction Scenario: ontology, architecture, implementation
- Conclusion

Introduction: Cyber-physical Systems

- Based on the real time interaction between physical world and cyber world.
- Rely on communication, computation and control infrastructures commonly consisting of several levels for the two worlds with various resources as sensors, actuators, computational resources, services, etc.

Cyber-physical Systems: Example

- Home cleaning scenario.
- Devices:
 - Robot vacuum cleaner (e.g. Yujin Robot iClebo Arte or iRobot Roomba)


 Manipulating robot (e.g. FESTO Robotino XT)

 "Smart home" systems (illumination control, information network, grid network, etc.)

Simplified Robots Interaction Scenario

- Two or more robots receive a task to execute actions, e.g. find an object and bring it to a storage.
- Only one robot should handle this task.
- Robots should interact to find the one who will bring the object to the storage.

- Task 1. Each robot should scan an area around.
- Task 2. Each robot should find the objects.
- Task 3. Each robot should find another robot.
- Task 4. Each robot should interoperate with another robot and decide who will go to the object.
- Task 5. Selected robot should carry out defined task with the object.

Scenario Implementation: Robot Constructing

- Scenario requires only base robot functions like moving and orientation in physical space.
- Robotic kits allow concentrating on the scenario developing without spending resources to robot development.
- Benefits:
 - allow to construct robots with different morphology without difficult process of sensors, motors and chips developing.
 - include controller board to control the inputs and outputs of the robot and provide environment for robot programming.
- Requirements:
 - Powerful and scalable control board.
 - Set of sensors and motors.
 - Information network connection.

Robotic Kits: Survey

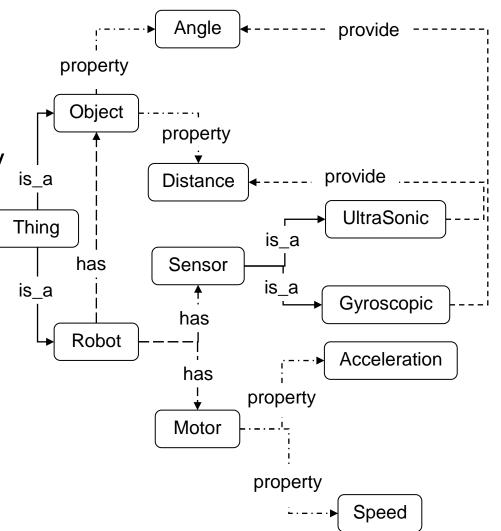
	VEX Robotics Design System	Lynxmotion Servo Erector Set	Lego ® Mindstorms
Control board	VEX ARM® Cortex®-based Microcontroller (ARM® Cortex® M3 ARMv7, 72 MHz, 64 Kb RAM, 384 KB program space)	Arduino-based controller (BotBoarduino)	ARMv9 core CPU 300 MHz, 64 Mb RAM, 16 Mb flash memory and microSDHC port
Sensors	 2 limit switches, 2 bumper switches, ultrasonic range sensor (from 4 to 292 cm.), 3 IR light sensors infrared LED 	IR Range sensor (from 10 to 80 cm).	 ultrasonic sensor (from 3 to 150 cm), touch sensor, gyroscopic sensor, light sensor.
Motors	4 similar	16 different	 2 large 1 medium
Information network	N/A	Bluetooth module	Bluetooth module Wi-Fi through USB
Additionally	 300 structural parts Wireless joystick	 500 structural parts Support of 3rd party sensors and motors 	550 parts + any part from the other Lego kits.

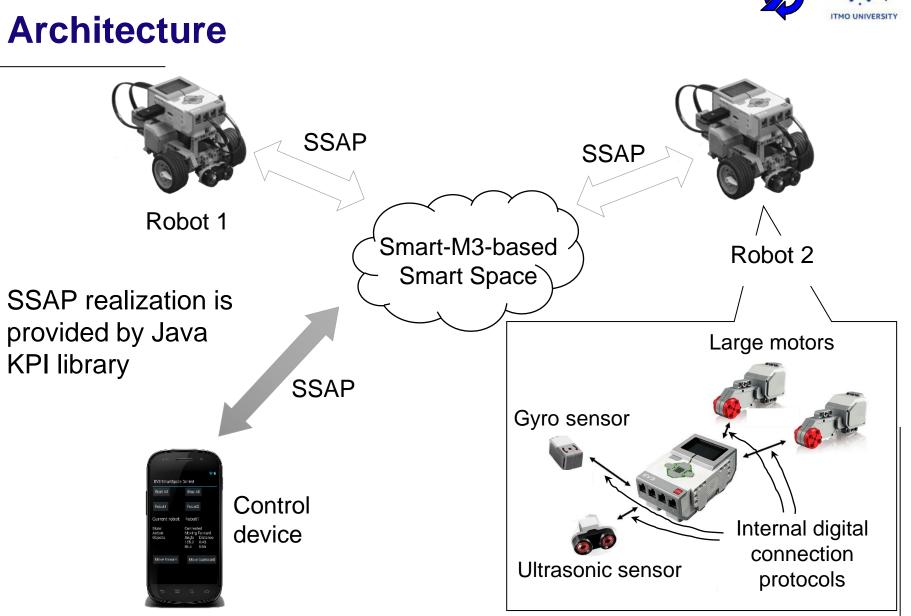
Lego Mindstorms EV3 Education Kit

- Benefits:
 - Provides the most used types of sensors and motors.
 - The control block has 4 input ports for sensors and 4 output ports for motors, USB port for different USB-devices, LCD screen, 6 buttons for user input and speaker for sound play.
 - The control block can be reconfigured for using high-level program languages for robot activity programming.
 - Wi-Fi USB-adapter allows connection to local Wi-Fi network.
 - Up to four EV3 control blocks can be connected using a USB cable and thereby enabling robot to have sixteen output ports and sixteen input ports.

Reconfiguration of Lego Mindsorms EV3 Control Block

- Environment for compiling programs under existing control brick's OS (e.g. NXTGCC, Lego.NET, different libraries for GCC, etc.)
- Controlling the EV3-based robot using different languages through the Bluetooth and/or USB interfaces (NXT_Python, OCamI-mindstorm, LabVIEW, etc).
- Replacement of the existing OS. The main control block OS is Linux-based and it is possible to run another Linux-based OS, that is built for ARM architecture. Using Linux-based OS allows writing programs with any supported programming language.
 - replacement of the kernel embedded into the control block (ROBOTC)
 - additional OS on SD-card without replacing the existing OS (brickOS, *leJOS*, ev3dev).

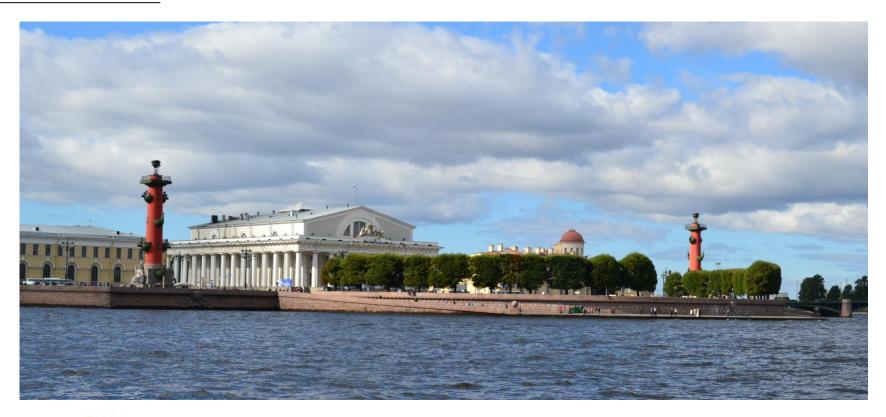

leJOS


- Acronym from Lego Java Operating System
- Provides the full featured Linux-based OS with GUI and Java Runtime Environment.
- LeJOS Java bindings implement access to the robot's hardware.
- Some of LeJOS benefits are:
 - object oriented language (Java);
 - pre-emptive threads (determined context switching);
 - (multi-dimensional) arrays;
 - synchronization;
 - exceptions;
 - types of variable including float, long, and String;
 - most of the standard Java classes are available;
 - well-documented robotics APIs.

Robots Interaction Scenario: Ontology

- Robots are connected to the local area network with Wi-Fi USB-adapters
- Interoperation is based on the smart space technology
- Smart-M3 is used as a technological platform for smart space.
- Ontology describes main entities in the system.
- Additional devices can be connected to the smart space for the control and measurements.

Robots Interaction Scenario:


Conclusion

- Existing robotic kits allow to concentrate on the scenario developing without spending resources to robot development.
- Devices in cyber-physical space are influenced by different events from the physical world and should cooperate in real time to reach desired goals.
- Future work:
 - Decrease object searching time as well as accuracy of objects detection.
 - Raw sensor data processing has to be improved.
 - More complex scenario can be implemented based on the case presented in the paper.

Thank you!

Contact information: e-mail: teslya@iias.spb.su; phone: +7 812 328 8071