

Cognitive Wireless Mesh Network without Common Control Channel Evaluated in NS-3

Dick Carrillo Melgarejo – dickm@cpqd.com.br

Contents

- CPqD Ecosystem
- What is Cognitive Radio?
- Cognitive Network at CPqD.
- Main requirements of Cognitive Networks.
- Cognitive network procedures.
- Multi Channel One Interface Manager (MC-OIM) algorithm.
- Real implementation of Cognitive Network.
- Simulation of Cognitive Network with ns-3.
- Conclusions.

CPqD Ecosystem

Private Law Foundation "Private company without shareholders" - Profit Reinvested

> TURNING INTO REALITY

Location: Campinas – São Paulo - Brasil

What is Cognitive Radio?

A "Cognitive Radio" is a radio that can change its transmitter parameters based on interaction with the environment in which it operates.

CRAHNs: Cognitive radio ad hoc networks Ian F. Akyildiz, Won-yeol Lee, Kaushik R. Chowdhury , 2009, 810-836.

Main requirements of Cognitive Networks

- Primary network can not be interfered by secondary network.
- Maximize secondary network Throughput.

Cognitive network procedures

Typical Cognitive	Non typical cognitive
network procedure	network procedure
In band sensing + out band sensing	Out band sensing
Spectrum sensing with	Spectrum sensing with
high sensibility to protect	high sensibility to protect
Primary User.	Primary User.
Non any specific algorithm	Algorithm to optimize
to optimize throughput	throughput over Non
over Non common control	common control channel
channel	and sensibility(MC-OIM).

*MC-OIM (Multi Channel - One Interface Manager)

Multi Channel - One Interface Manager (MC-OIM) algorithm

IsAlive = 1, the communication link between routers is working normally.

IsAlive = 0, the communication link between routers has any fault.

Algorithm 1 Main step by step of MC-OIM algorithm STEP 1: Message transmission between MCMR and FCMR to check link communication between routers 1: Check $IsAlive_{jk}, j \neq k, \{j, k \in G\}$ STEP 2: Getting metric to be used as trigger decision 1: for $i \in F, F \to Set of Channels do$ $Q \leftarrow \frac{P_i}{Z_i}$ 2: 3: end for STEP 3: Ranking channel update 1: while $Q \neq 0$ do $C \leftarrow descendingOrder(Q)$ 2: $i^* \leftarrow C[0]$ 3: if IsAlive = 0 then 4: switch to channel i^* 5: if IsAlive = 0 then 6: $i^{**} \leftarrow C[1]$ 7: switch to channel i^{**} 8: end if 9: end if 10: 11: end while

17th FRUCT - Yaroslavl

CCMN - CPqD Cognitive Mesh Network

•Evaluate complex cognitive procedures.

Cognitive Network at CPqD (prototypes)

Cognitive Radio Prototype (2nd Generation)

Mesh Router transferred to the industry (1st Generation)

Elements of the Cognitive Network at CPqD

- Channel occupation data base.
- Best channel ranking.

 Mesh Router with spectrum sensing capability to detect signals with SNR > 1 dB

Primary User with OFDM
Signal with BW = 5MHz

Generic sensing algorithm

Main Objective: Spectrum energy detection for very low signals (at the noise floor level) and without n e e d t o k n o w t h e signal characteristics in advance.

Tools: GNU Radio, C++ and Python languages.

Performance of primary user detection

* A USRP-based scheme for cooperative sensing networks – 2013 research paper at CPqD

Performance of primary user detection

* A USRP-based scheme for cooperative sensing networks – 2013 research paper at CPqD

Real cognitive network at CPqD Campus

NS-3 SIMULATOR MODEL FOR CCMN

A. Al-Ali, and K. Chowdhury, "Simulating dynamic spectrum access using ns-3 for wireless networks in smart environments." in Sensing, Communication, and Networking Workshops (SECON Workshops), 2014 Eleventh Annual IEEE International Conference on, 2014, pp. 28-33.

Advantages to use NS-3 over implementation in real scenario.

- Non limitation in topology scenario.
- It could be implemented as many mesh routers based on user requirements.
- Advantages to test other new algorithms in a variety of scenarios.
- Posibility to apply the same algorithms in other air interfaces technologies as LTE because ns-3 supports LTE.

Average throughput with TCP traffic using MC-OIM algorithm

Average Throughput [Mbps]		Primary User	Throughput Gain [%]
with MC-OIM	without MC-OIM	•,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		Without PU	
6	6	and without	
		cognition	
5.23	4.83	Without PU	8.28%
4.94	4.43	Random PU	11.5%
4.83	3.73	Sequential PU	29.5%
5.5	4.1	Sequential PU	34%
		simulated in ns-3	

Conclusions

- Tests performed using the MC-OIM algorithm showed in all cases a greater throughput compared to tests performed without using algorithm MC-OIM.
- Validation of ns-3 simulation was done using real implementation as a reference with similar results.
- This ns-3 extension could be used to test bigger scenarios without the necessity of extra expenses in building real scenario setups.

спасибо

17th FRUCT - Yaroslavl

Dick Carrillo Melgarejo dickm@cpqd.com.br

(27)