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Ubiquitous connectivity 

Converged infrastructure for 
Personal Area Networking 
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q  Growing interest towards the THz band 
§  Feasible for micro- and nano-scale devices 
§  Smaller devices è smaller Tx/Rx è smaller 

antennas è higher frequencies 

Devices miniaturization trend 
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§  Adaptation of communication techniques is required 
§  Novel research challenges raise 

E. g. 1 THz è 0.3 mm 
wavelength 
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Definitions of the THz band 

Frequency range Wavelengths 
Industry, IEEE 802.15.3d 0.3 – 3 THz  1 mm – 100 µm 

Academia 0.1 – 10 THz 3 mm – 30 µm 

Smart academia 0.06 – 10 THz 5 mm – 30 µm 

Current presentation Major focus: 0.1 – 3 THz  Primary: 3 mm – 100 µm 
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Industry 
2008: IEEE 802.15 THz 
Interest Group (IG) 

 

2013: IG upgraded to a 
Study Group on 100G 
 

2014: Task Group .3d 
has been established 

 

  Over 300 contributions 
 

Interest growth in numbers 

Academia 

§ Workshops at INFOCOM 
and ICC 

 

§  Symposiums at 
GLOBECOM and ICC 

 

§  IEEE Transactions on THz, 
 2 Special Issues in JSAC 

 
More than 500 articles 

Several proofs of concept for elements 
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q  One atom thick carbon material 
q  Produced by Andre Geim, 

 K. Novoselov in 2004 
§  Nobel prize 2010 

q  Major electrical property: 
§  Extremely high electrical conductivity 

q  Derivatives: 
§  Carbon Nanotubes (CNT) 
§  Graphene Nanoribbons (GNR) 

Enabling technologies 
Graphene and Carbon Nano Tubes (CNTs) 

Feasibility of micro- and 
nano-scale antennas 
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q  Spatial loss 
§  E.g. free-space loss for 

 omnidirectional antennas 
q  Molecular absorption loss 

§  Frequency-selective channel (!!!) 
§  Due to internally vibrating molecules on 

frequencies similar to signal ones 
§  Feature of the THz Band 
§  Abs. coefficients è from HITRAN database 

THz channel properties (1) 
Propagation and path loss 
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q  Feature of the THz band 
§  Molecules convert part of the 

absorbed energy into kinetic energy  

THz channel properties (2) 
Molecular absorption noise 

PN f ,d( ) = kBNM f( )
= kBT 1−τ f ,d( )"# $%=
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Noise highly fluctuates 
through the frequencies 

Range of minimal 
noise level 
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THz channel is frequency-selective 

Window Frequency range Bandwidth Half pulse duration 
1 0.10 – 0.54 THz  440 GHz 1.48 ps 
2 0.63 – 0.72 THz 95 GHz 6.53 ps 
3 0.76 – 0.98 THz 126 GHz 4.92 ps 
4 7.07 – 7.23 THz 160 GHz 2.59 ps 
5 7.75 – 7.88 THz 130 GHz 3.88 ps 
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Overall loss, dB
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q  First transparency 
window is the 
most promising 

Study 0.1 – 0.54 THz in-depth  
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q  ~20dB gain over 0.1 – 3 THz (!) 
§  (10 times in amplitude, 100 in power) 
§  Sufficient for decoding with major MCS 
§  Suggested for transmission over 

  “longer” distances: ≥1 cm 

First transparency window, 0.1 – 0.54 THz 
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Range/capacity trade off 
Small channels 
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q  For 10 cm distance: 
Frequency range (bandwidth) SNR Capacity 

0.1 – 0.54 THz (440 GHz) 20 dB 500 Gbps 

0.1 – 0.2 THz (100 GHz) 33 dB 300 Gbps 

0.1 – 0.15 THz (50 GHz) 35 dB 200 Gbps 

Enabling complex MCSs 
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Range/capacity trade off 
Tiny channels 
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q  For SNR = 10 dB, Smart metering case 
Frequency range (bandwidth) Range Capacity (at 1 m) 

~0.1 THz (1000 MHz) 2 m 8 Gbps 

~0.1 THz (10 MHz) 6 m 0.1 Gbps (100 Mbps) 

~0.1 THz (1 MHz) 15 m 0.01 Gbps (10 Mbps) 

Applicable for sensing applications 
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q  Limitations of continuous-wave MCS: 
§  Generating carrier at 1-2THz and higher 
§  Filtering at higher frequencies 
§  Energy efficiency 
Advances in physics are needed 

q  On/Off keying 
q  Transmitting s(t): 

§  s(t)=1 è Pulse 
§  s(t)=0 è Silence 

“Low-complex” hardware 

Modulation and Coding 
On/Off Keying simple MCS 
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q  Asymmetric channel: pE1 ≠ pE0 
q  Set of threshold è optimisation problem 
q  BER can be lower than 0.001  

BER and throughput estimation for OOK 

FEC codes are applicable 
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q  Fundamental PHY: Feasibility of miniaturised 
components design and manufacturing 
§  THz signal generators 
§  Tx/Rx 
§  Antennas 

q  Advanced PHY: Rapid improvements study 
§  Feasibility of carriers-based communications 
§  Directivity is vital and needed soon 

 (mitigation of high propagation losses) 
§  Antenna arrays and (massive) MIMO 

Summary 
Primary research challenges (1) 
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q  Lower link: Principal selection of MCS type 
§  Limitations of On/Off keying modulation 
§  Applicability of IEEE 802.11ac-based 

signaling (minimize time-to-market) 
§  Suitability of full-duplex MAC 

q  Upper link and higher layers: System level 
§  Peers discovery (especially, with directional 

antennas), angle of arrival, etc. 
§  Addressing for massive amount of devices 
§  Security and Privacy issues 

   

Summary 
Primary research challenges (2) 

Applicability assessment for certain user scenarios 
 


