Approaches to the SoC IPBlocks' Design With Errors' Mitigation

Valentin Rozanov, Elena Suvorova
Saint-Petersburg State University of Aerospace Instrumentation

Errors on different stages of IP-block lifetime

Types and causes of errors in exploitation part of lifetime

Soft Errors

Single event upset (SEU)

Multiple cell upset (MCU)

Hard Errors

Single event latch-up (SEL)

Single event gate rupture (SEGR)

Single event transient (SET)

Single event functional interrupt (SEFI)

Construction of errors resilient SoC

Reconfiguration as a fault mitigation methods in FPGA

Reconfiguration as a fault mitigation methods in ASIC

- Switching on and off different elements, in this case redundancy at the level of components and connections is used
- Using of look-up tables
- Using of logical elements libraries, that allows reconfiguration of logic (logical element can perform various functions depending on configuration for example NAND, NOR, NOT)

Methods of failure assessment

Fault tree method

Logical block-diagram method

Markov chain method

Scheme of transport layer protocol controller without reconfiguration

sUAI

Graph of non-reconfigurable controller states

1. All works correct
2. Receiving branch fails, transmitting branch works
3. Transmitting branch fails, receiving branch works
4. Both of branches fails

Using Chapman-Kolmogorov equation to calculate probability of finding in each of the state

For non-reconfigurable considered variant

$$
\begin{aligned}
& P_{n}= {\left[\begin{array}{cccc}
p_{n 11} & p_{n 12} & p_{n 13} & p_{n 14} \\
0 & p_{n 22} & 0 & p_{n 24} \\
0 & 0 & p_{n 33} & p_{n 34} \\
0 & 0 & 0 & p_{n 44}
\end{array}\right] \quad P_{n}^{*}(0)=[1,0,0,0], } \\
& P_{m r}^{*}=0.001, p_{m t}=0 . \\
& \mathrm{P}_{\mathrm{n}}^{*}+P_{r 2}^{*}+P_{r 3}^{*}+P_{r 4}^{*}=1
\end{aligned}
$$

Dependence of probability value to stay in state 1-4

5009 steps made for $\mathrm{P}_{\mathrm{n}}{ }^{*}(\mathrm{t})=\left[\mathrm{P}_{\mathrm{n} 1}{ }^{*}<0.1, \mathrm{P}_{\mathrm{n} 2}{ }^{*}<0.1, \mathrm{P}_{\mathrm{n} 3}{ }^{*}<0.1, \mathrm{P}_{\mathrm{n} 4}{ }^{*}>0.99\right]$

SUAI

Scheme of transport layer protocol controller with reconfiguration

Graph of controller states with reconfiguration in states 2 or 3

1. All works correct
2. Receiving branch fails, transmitting branch works
3. Transmitting branch fails, receiving branch works
4. Reconfiguration
5. Reconfiguration
6. Both of branches fails

Compare non-reconfigurable and reconfigurable graphs

Using Chapman-Kolmogorov equation to calculate probability of finding in each of the state

For reconfigurable considered variant

$$
P=\left[\begin{array}{cccccc}
p_{r 11} & p_{r 12} & p_{r 13} & 0 & 0 & p_{r 16} \\
0 & 0 & 0 & p_{r 24} & 0 & p_{r 26} \\
0 & 0 & 0 & 0 & p_{r 35} & p_{r 36} \\
0 & 0 & 0 & p_{r 44} & 0 & p_{r 46} \\
0 & 0 & 0 & 0 & p_{r 55} & p_{r 56} \\
0 & 0 & 0 & 0 & 0 & p_{r 66}
\end{array}\right] \quad \mathrm{P}_{\mathrm{r}}^{*}(0)=[1,0,0,0,0,0] .
$$

$$
P_{r 1}^{*}+P_{r 2}^{*}+P_{r 3}^{*}+P_{r 4}^{*}+P_{r 5}^{*}+P_{r 6}^{*}=1
$$

$$
\mathrm{P}_{\mathrm{r}}^{*}(\mathrm{t})=\left[\mathrm{P}_{\mathrm{r} 1}^{*}<0.1, \mathrm{P}_{\mathrm{r} 2}^{*}<0.1, \mathrm{P}_{\mathrm{r} 3}^{*}<0.1, \mathrm{P}_{\mathrm{r} 4}^{*}<0.1, \mathrm{P}_{\mathrm{r} 5}^{*}<0.1, \mathrm{P}_{\mathrm{r} 6}^{*}>0.99\right]
$$

Dependence of probability value to stay in state 1-6

4551 steps made for $\mathrm{P}_{\mathrm{r}}^{*}(\mathrm{t})=\left[\mathrm{P}_{\mathrm{r} 1}^{*}<0.1, \mathrm{P}_{\mathrm{r} 2}{ }^{*}<0.1, \mathrm{P}_{\mathrm{r} 3}^{*}<0.1, \mathrm{P}_{\mathrm{r} 4}^{*}<0.1, \mathrm{P}_{\mathrm{r} 5}^{*}<0.1, \mathrm{P}_{\mathrm{r} 6}{ }^{*}>0.99\right]$

Compare two results in graph view

- non-reconfigurable
- 4 states
- 5009 steps made

- reconfigurable
- 6 states
- 4551 steps made

Results of calculation

Parameter	Controller		Difference
	Non-Reconfigurable	Reconfigurable	
Number of states	4	6	2
Value of fail probability	$\mathrm{p}_{\mathrm{mr}}=0.001, \mathrm{p}_{\mathrm{mt}}=0.002$		-
Starting values of probability	$\mathrm{P}_{\mathrm{n}}{ }^{*}(0)=[1,0,0,0$,	$\mathrm{P}_{\mathrm{r}}{ }^{*}(0)=[1,0,0,0,0,0]$	$=$
Ending values of probabilities	$\begin{gathered} \mathrm{P}_{\mathrm{n}}^{*}(\mathrm{t})=\left[\mathrm{P}_{\mathrm{n}}^{*} 4>0.99,\right. \\ \text { others }<0.1] \end{gathered}$	$\begin{gathered} \mathrm{P}_{\mathrm{r}}^{*}(\mathrm{t})=\left[\mathrm{P}_{\mathrm{r}}^{*} 6>0.99,\right. \\ \text { others }<0.1] \end{gathered}$	=
Number of steps to fail	5009	4551	10\%

Advantages and Disadvantages

Disadvantages

- Speed of data receiving and transmitting may be lower, because of using one memory unit for two directions;
- If the last memory unit breaks down, controller becomes faulty in a moment.

Advantages

- Ensure full operability of the controller even in the event of failure of one of the memory units;
- Maintaining the required space occupied by NoC in terms of memory elements.

Thank you! Questions?!

