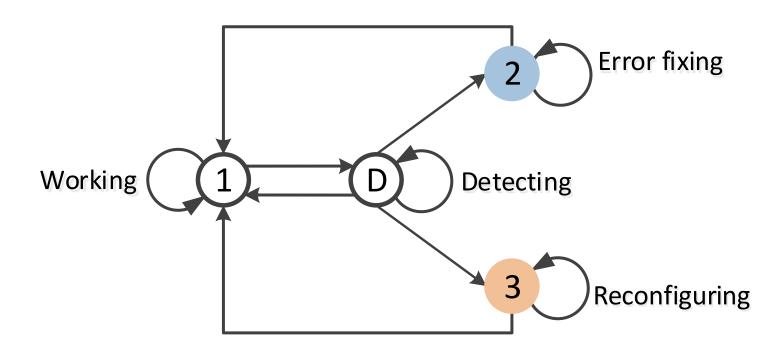
Approaches to the SoC IP-Blocks' Design With Errors' Mitigation

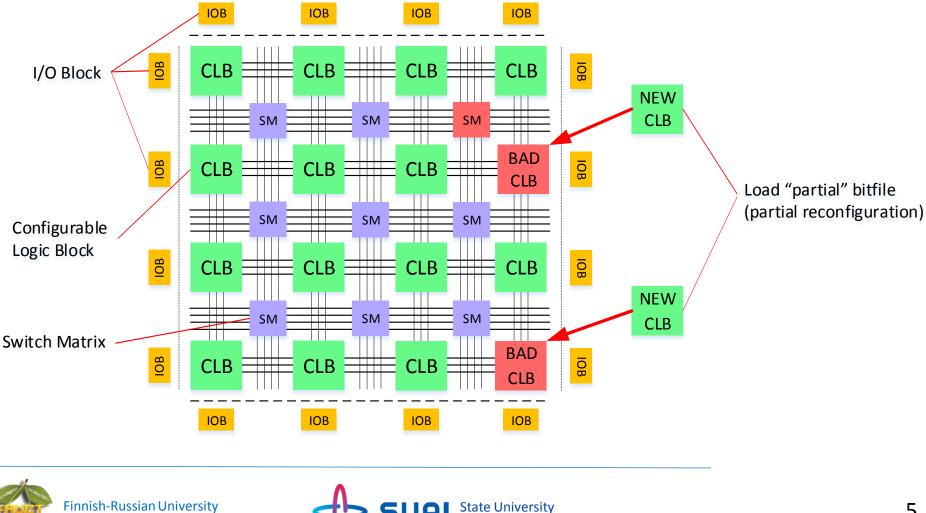
Valentin Rozanov, Elena Suvorova Saint-Petersburg State University of Aerospace Instrumentation

Errors on different stages of IP-block lifetime

Compilation for manufacturing	Manufacturing	Exploitation
Compilation errors	Manufacturing errors	External influence
Checks by testing before exploitation		
Can be fixed if error is detected Sometimes can be fixed		Can't be fixed
	manufacturing Compilation errors ks by testing before exploi	manufacturing Manufacturing Compilation errors Manufacturing errors Ks by testing before exploitation ks by testing before exploitation


Types and causes of errors in exploitation part of lifetime

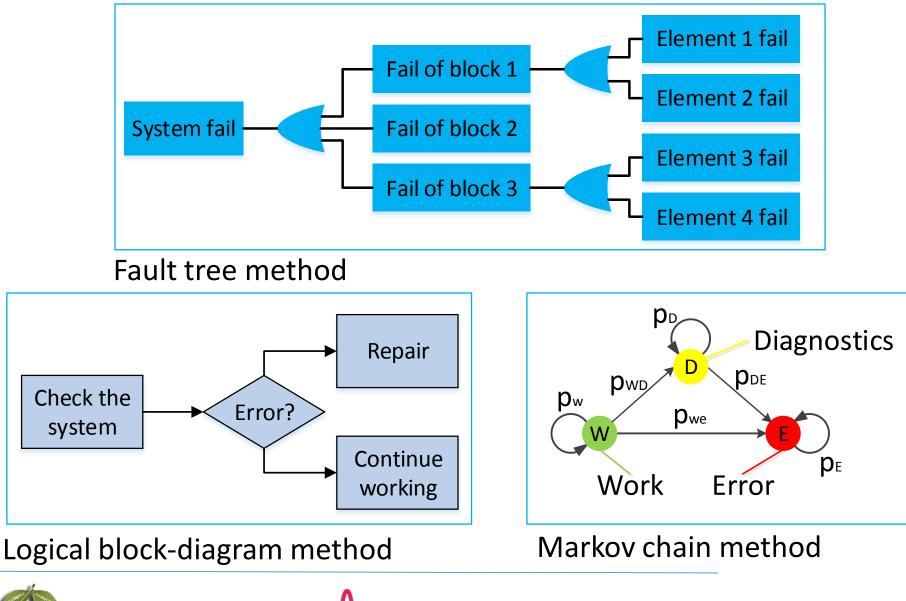
Soft Errors	Hard Errors	
Single event upset (SEU)	Single event latch-up (SEL)	
Multiple cell upset (MCU)	Single event gate rupture (SEGR)	
Single event transient (SET)		
Single event functional interrupt (SEFI)		


Construction of errors resilient SoC

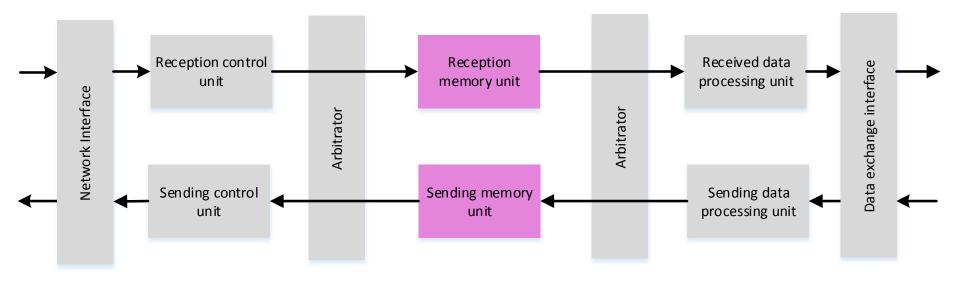
Reconfiguration as a fault mitigation methods in FPGA

of Aerospace Instrumentation

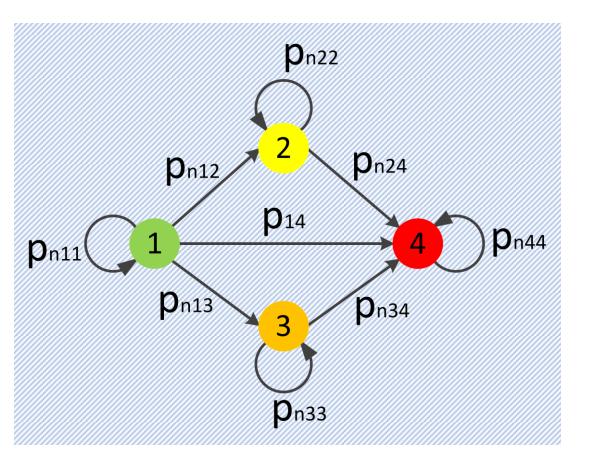
Cooperation in Telecommunications


Reconfiguration as a fault mitigation methods in ASIC

- Switching on and off different elements, in this case redundancy at the level of components and connections is used
- Using of look-up tables
- Using of logical elements libraries, that allows reconfiguration of logic (logical element can perform various functions depending on configuration for example NAND, NOR, NOT)



Methods of failure assessment


Scheme of transport layer protocol controller without reconfiguration

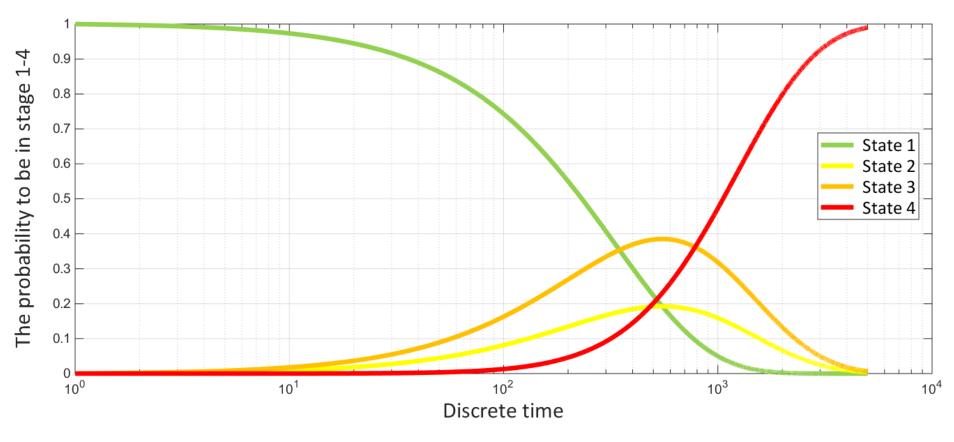
Graph of non-reconfigurable controller states

- 1. All works correct
- 2. Receiving branch fails, transmitting branch works
- 3. Transmitting branch fails, receiving branch works
- 4. Both of branches fails

Using Chapman-Kolmogorov equation to calculate probability of finding in each of the state

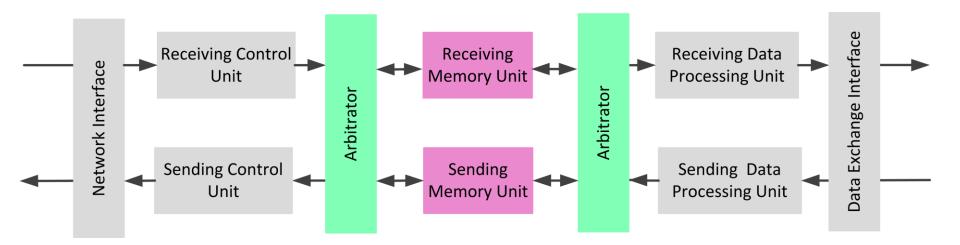
For non-reconfigurable considered variant

$$P_{n} = \begin{bmatrix} p_{n11} & p_{n12} & p_{n13} & p_{n14} \\ 0 & p_{n22} & 0 & p_{n24} \\ 0 & 0 & p_{n33} & p_{n34} \\ 0 & 0 & 0 & p_{n44} \end{bmatrix} \qquad P_{n}^{*}(0) = [1,0,0,0],$$

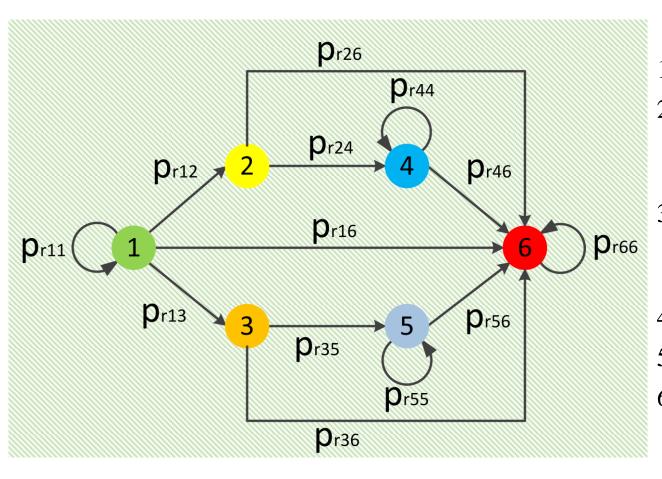

 $P_{r1}^* + P_{r2}^* + P_{r3}^* + P_{r4}^* = 1$

 $P_n^*(t) = [P_{n1}^* < 0.1, P_{n2}^* < 0.1, P_{n3}^* < 0.1, P_{n4}^* > 0.99]$

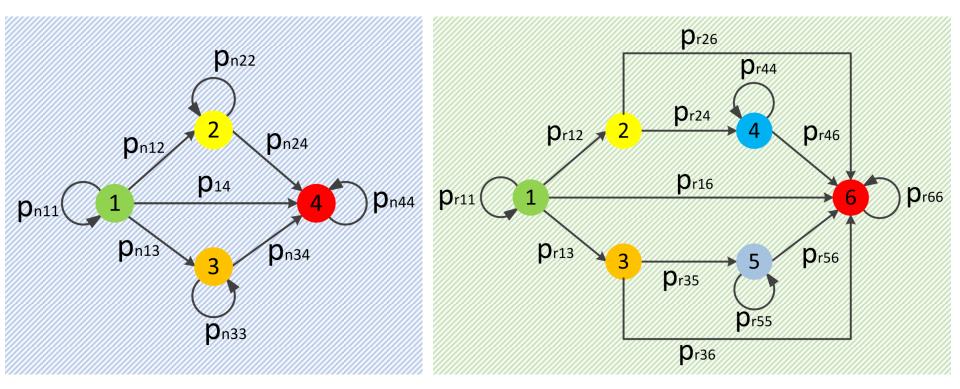
Dependence of probability value to stay in state 1-4



5009 steps made for $P_n^*(t) = [P_{n1}^* < 0.1, P_{n2}^* < 0.1, P_{n3}^* < 0.1, P_{n4}^* > 0.99]$


Scheme of transport layer protocol controller with reconfiguration

Graph of controller states with reconfiguration in states 2 or 3



- 1. All works correct
- 2. Receiving branch fails, transmitting branch works
- 3. Transmitting branch fails, receiving branch works
- 4. Reconfiguration
- 5. Reconfiguration
- 6. Both of branches fails

Compare non-reconfigurable and reconfigurable graphs

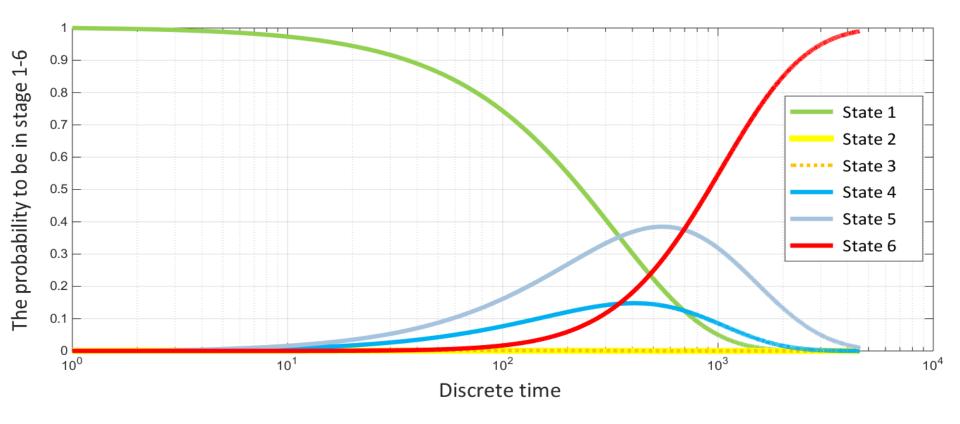
Using Chapman-Kolmogorov equation to calculate probability of finding in each of the state

For reconfigurable considered variant

$$P = \begin{bmatrix} p_{r11} & p_{r12} & p_{r13} & 0 & 0 & p_{r16} \\ 0 & 0 & 0 & p_{r24} & 0 & p_{r26} \\ 0 & 0 & 0 & 0 & p_{r35} & p_{r36} \\ 0 & 0 & 0 & p_{r44} & 0 & p_{r46} \\ 0 & 0 & 0 & 0 & p_{r55} & p_{r56} \\ 0 & 0 & 0 & 0 & 0 & p_{r66} \end{bmatrix}$$

 $P_r^{*}(0) = [1,0,0,0,0,0].$

$$p_{mr}=0.001, p_{mt}=0.002$$


 $P_{r1}^* + P_{r2}^* + P_{r3}^* + P_{r4}^* + P_{r5}^* + P_{r6}^* = 1$

 $P_{r}^{*}(t) = [P_{r1}^{*} < 0.1, P_{r2}^{*} < 0.1, P_{r3}^{*} < 0.1, P_{r4}^{*} < 0.1, P_{r5}^{*} < 0.1, P_{r6}^{*} > 0.99]$

Dependence of probability value to stay in state 1-6

4551 steps made for $P_r^*(t) = [P_{r1}^* < 0.1, P_{r2}^* < 0.1, P_{r3}^* < 0.1, P_{r4}^* < 0.1, P_{r5}^* < 0.1, P_{r6}^* > 0.99]$

Compare two results in graph view

- non-reconfigurable
- 4 states
- 5009 steps made
- The probability to be in stage 1-4 0.9 0.8 0.7 State 1 0.6 State 2 State 3 0.5 State 4 0.4 0.3 0.2 0.1 0 10⁰ 10³ 10¹ 10^{2} 10^{4} Discrete time The probability to be in stage 1-6 0.9 0.8 State 1 0.7 State 2 0.6 State 3 0.5 State 4 State 5 0.4 State 6 0.3 0.2 0.1 10⁰ 10¹ 10³ 10^{4} 10 Discrete time

- reconfigurable
- 6 states
- 4551 steps made

Results of calculation

Parameter	Controller		D.((
	Non-Reconfigurable	Reconfigurable	Difference
Number of states	4	6	2
Value of fail probability	$p_{mr} = 0.001, p_{mt} = 0.002$		-
Starting values of probability	$P_n^{*}(0) = [1, 0, 0, 0,]$	$P_r^{*}(0) = [1, 0, 0, 0, 0, 0]$	=
Ending values of probabilities	$P_n^{*}(t) = [P_n^{*}4 > 0.99, others < 0.1]$	$P_r^*(t) = [P_r^*6 > 0.99, others < 0.1]$	=
Number of steps to fail	5009	4551	10%

Advantages and Disadvantages

Disadvantages

- Speed of data receiving and transmitting may be lower, because of using one memory unit for two directions;
- If the last memory unit breaks down, controller becomes faulty in a moment.

Advantages

- Ensure full operability of the controller even in the event of failure of one of the memory units;
- Maintaining the required space occupied by NoC in terms of memory elements.

Thank you! Questions?!

